Switch to: References

Add citations

You must login to add citations.
  1. Why is the Universe of Sets Not a Set?Zeynep Soysal - 2017 - Synthese:1-23.
    According to the iterative conception of sets, standardly formalized by ZFC, there is no set of all sets. But why is there no set of all sets? A simple-minded, though unpopular, “minimal” explanation for why there is no set of all sets is that the supposition that there is contradicts some axioms of ZFC. In this paper, I first explain the core complaint against the minimal explanation, and then argue against the two main alternative answers to the guiding question. I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantification and Paradox.Edward Ferrier - 2018 - Dissertation, University of Massachusetts Amherst
    I argue that absolutism, the view that absolutely unrestricted quantification is possible, is to blame for both the paradoxes that arise in naive set theory and variants of these paradoxes that arise in plural logic and in semantics. The solution is restrictivism, the view that absolutely unrestricted quantification is not possible. -/- It is generally thought that absolutism is true and that restrictivism is not only false, but inexpressible. As a result, the paradoxes are blamed, not on illicit quantification, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal Set Theory.Christopher Menzel - forthcoming - In Otávio Bueno & Scott Shalkowski (eds.), The Routledge Handbook of Modality. London and New York: Routledge.
    This article presents an overview of the basic philosophical motivations for, and some recent work in, modal set theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Maximality Principles in Set Theory.Luca Incurvati - 2017 - Philosophia Mathematica 25 (2):159-193.
    In set theory, a maximality principle is a principle that asserts some maximality property of the universe of sets or some part thereof. Set theorists have formulated a variety of maximality principles in order to settle statements left undecided by current standard set theory. In addition, philosophers of mathematics have explored maximality principles whilst attempting to prove categoricity theorems for set theory or providing criteria for selecting foundational theories. This article reviews recent work concerned with the formulation, investigation and justification (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Worlds and Propositions Set Free.Otávio Bueno, Christopher Menzel & Edward N. Zalta - 2013 - Erkenntnis (4):1-24.
    The authors provide an object-theoretic analysis of two paradoxes in the theory of possible worlds and propositions stemming from Russell and Kaplan. After laying out the paradoxes, the authors provide a brief overview of object theory and point out how syntactic restrictions that prevent object-theoretic versions of the classical paradoxes are justified philosophically. The authors then trace the origins of the Russell paradox to a problematic application of set theory in the definition of worlds. Next the authors show that an (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • When Do Some Things Form a Set?Simon Hewitt - 2015 - Philosophia Mathematica 23 (3):311-337.
    This paper raises the question under what circumstances a plurality forms a set, parallel to the Special Composition Question for mereology. The range of answers that have been proposed in the literature are surveyed and criticised. I argue that there is good reason to reject both the view that pluralities never form sets and the view that pluralities always form sets. Instead, we need to affirm restricted set formation. Casting doubt on the availability of any informative principle which will settle (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Neglected Resolution of Russell’s Paradox of Propositions.Gabriel Uzquiano - 2015 - Review of Symbolic Logic 8 (2):328-344.
    Bertrand Russell offered an influential paradox of propositions in Appendix B of The Principles of Mathematics, but there is little agreement as to what to conclude from it. We suggest that Russell's paradox is best regarded as a limitative result on propositional granularity. Some propositions are, on pain of contradiction, unable to discriminate between classes with different members: whatever they predicate of one, they predicate of the other. When accepted, this remarkable fact should cast some doubt upon some of the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Purely Recombinatorial Puzzle.Fritz Peter - 2017 - Noûs 51 (3):547-564.
    A new puzzle of modal recombination is presented which relies purely on resources of first-order modal logic. It shows that naive recombinatorial reasoning, which has previously been shown to be inconsistent with various assumptions concerning propositions, sets and classes, leads to inconsistency by itself. The context sensitivity of modal expressions is suggested as the source of the puzzle, and it is argued that it gives us reason to reconsider the assumption that the notion of metaphysical necessity is in good standing.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modality and Paradox.Gabriel Uzquiano - 2015 - Philosophy Compass 10 (4):284-300.
    Philosophers often explain what could be the case in terms of what is, in fact, the case at one possible world or another. They may differ in what they take possible worlds to be or in their gloss of what is for something to be the case at a possible world. Still, they stand united by the threat of paradox. A family of paradoxes akin to the set-theoretic antinomies seem to allow one to derive a contradiction from apparently plausible principles. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations