Switch to: References

Add citations

You must login to add citations.
  1. Chains of Life: Turing, Lebensform, and the Emergence of Wittgenstein’s Later Style.Juliet Floyd - 2016 - Nordic Wittgenstein Review 5 (2):7-89.
    This essay accounts for the notion of _Lebensform_ by assigning it a _logical _role in Wittgenstein’s later philosophy. Wittgenstein’s additions of the notion to his manuscripts of the _PI_ occurred during the initial drafting of the book 1936-7, after he abandoned his effort to revise _The Brown Book_. It is argued that this constituted a substantive step forward in his attitude toward the notion of simplicity as it figures within the notion of logical analysis. Next, a reconstruction of his later (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Wittgenstein on Proof and Concept-Formation.Sorin Bangu - forthcoming - Philosophical Quarterly.
    In his Remarks on the Foundations of Mathematics, Wittgenstein claims, puzzlingly, that ‘the proof creates a new concept’ (RFM III-41). This paper aims to contribute to clarifying this idea, and to showing how it marks a major break with the traditional conception of proof. Moreover, since the most natural way to understand his claim is open to criticism, a secondary goal of what follows is to offer an interpretation of it that neutralizes the objection. The discussion proceeds by analysing a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Motivating Wittgenstein's Perspective on Mathematical Sentences as Norms.Simon Friederich - 2011 - Philosophia Mathematica 19 (1):1-19.
    The later Wittgenstein’s perspective on mathematical sentences as norms is motivated for sentences belonging to Hilbertian axiomatic systems where the axioms are treated as implicit definitions. It is shown that in this approach the axioms are employed as norms in that they function as standards of what counts as using the concepts involved. This normative dimension of their mode of use, it is argued, is inherited by the theorems derived from them. Having been motivated along these lines, Wittgenstein’s perspective on (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Wittgenstein on pure and applied mathematics.Ryan Dawson - 2014 - Synthese 191 (17):4131-4148.
    Some interpreters have ascribed to Wittgenstein the view that mathematical statements must have an application to extra-mathematical reality in order to have use and so any statements lacking extra-mathematical applicability are not meaningful (and hence not bona fide mathematical statements). Pure mathematics is then a mere signgame of questionable objectivity, undeserving of the name mathematics. These readings bring to light that, on Wittgenstein’s offered picture of mathematical statements as rules of description, it can be difficult to see the role of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Philosophical pictures about mathematics: Wittgenstein and contradiction.Hiroshi Ohtani - 2018 - Synthese 195 (5):2039-2063.
    In the scholarship on Wittgenstein’s later philosophy of mathematics, the dominant interpretation is a theoretical one that ascribes to Wittgenstein some type of ‘ism’ such as radical verificationism or anti-realism. Essentially, he is supposed to provide a positive account of our mathematical practice based on some basic assertions. However, I claim that he should not be read in terms of any ‘ism’ but instead should be read as examining philosophical pictures in the sense of unclear conceptions. The contrast here is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Radical anti-realism, Wittgenstein and the length of proofs.Mathieu Marion - 2009 - Synthese 171 (3):419 - 432.
    After sketching an argument for radical anti-realism that does not appeal to human limitations but polynomial-time computability in its definition of feasibility, I revisit an argument by Wittgenstein on the surveyability of proofs, and then examine the consequences of its application to the notion of canonical proof in contemporary proof-theoretical-semantics.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Different senses of finitude: An inquiry into Hilbert’s finitism.Sören Stenlund - 2012 - Synthese 185 (3):335-363.
    This article develops a critical investigation of the epistemological core of Hilbert's foundational project, the so-called the finitary attitude. The investigation proceeds by distinguishing different senses of 'number' and 'finitude' that have been used in the philosophical arguments. The usual notion of modern pure mathematics, i.e. the sense of number which is implicit in the notion of an arbitrary finite sequence and iteration is one sense of number and finitude. Another sense, of older origin, is connected with practices of counting (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Wittgenstein on Set Theory and the Enormously Big.Ryan Dawson - 2015 - Philosophical Investigations 39 (4):313-334.
    Wittgenstein's conception of infinity can be seen as continuing the tradition of the potential infinite that begins with Aristotle. Transfinite cardinals in set theory might seem to render the potential infinite defunct with the actual infinite now given mathematical legitimacy. But Wittgenstein's remarks on set theory argue that the philosophical notion of the actual infinite remains philosophical and is not given a mathematical status as a result of set theory. The philosophical notion of the actual infinite is not to be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Coup d’Oeil: On a Mode of Understanding.Lorraine Daston - 2019 - Critical Inquiry 45 (2):307-331.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Proofs Versus Experiments: Wittgensteinian Themes Surrounding the Four-Color Theorem.G. D. Secco - 2017 - In Marcos Silva (ed.), How Colours Matter to Philosophy. Cham: Springer. pp. 289-307.
    The Four-Colour Theorem (4CT) proof, presented to the mathematical community in a pair of papers by Appel and Haken in the late 1970's, provoked a series of philosophical debates. Many conceptual points of these disputes still require some elucidation. After a brief presentation of the main ideas of Appel and Haken’s procedure for the proof and a reconstruction of Thomas Tymoczko’s argument for the novelty of 4CT’s proof, we shall formulate some questions regarding the connections between the points raised by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Aritmética e conhecimento simbólico: notas sobre o Tractatus Logico-Philosophicus e o ensino de filosofia da matemática.Gisele Dalva Secco - 2020 - Perspectiva Filosófica 47 (2):120-149.
    Departing from and closing with reflections on issues regarding teaching practices of philosophy of mathematics, I propose a comparison between the main features of the Leibnizian notion of symbolic knowledge and some passages from the Tractatus on arithmetic. I argue that this reading allows (i) to shed a new light on the specificities of the Tractarian definition of number, compared to those of Frege and Russell; (ii) to highlight the understanding of the nature of mathematical knowledge as symbolic or formal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein et la preuve mathématique comme vérifacteur.Mathieu Marion - 2011 - Philosophiques 38 (1):137-156.
    Dans ce texte, je pars de l’analyse intuitionniste de la vérité mathématique, « A est vrai si et seulement s’il existe une preuve de A » comme cas particulier de l’analyse de la vérité en termes de « vérifacteur », et je montre pourquoi Wittgenstein partageait celle-ci avec les intuitionnistes. Cependant, la notion de preuve à l’oeuvre dans cette analyse est, selon l’intuitionnisme, celle de la « preuve-comme-objet », et je montre par la suite, en interprétant son argument sur le (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Geometric diagrams as an effective notation.John Mumma - 2024 - Philosophical Investigations 47 (4):558-583.
    In what way does a mathematical proof depend on the notation used in its presentation? This paper examines this question by analysing the computational differences, in the sense of Larkin and Simon's ‘Why a diagram is (sometimes) worth 10,000 words’, between diagrammatic and sentential notations as a means for presenting geometric proofs. Wittgenstein takes up the question of mathematical notation and proof in Section III of Remarks on the Foundations of Mathematics. After discussing his observations on a proof's ‘characteristic visual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Intuition and Natural Numbers: A Critical Discussion.Felix Mühlhölzer - 2010 - Erkenntnis 73 (2):265-292.
    Charles Parsons’ book “Mathematical Thought and Its Objects” of 2008 (Cambridge University Press, New York) is critically discussed by concentrating on one of Parsons’ main themes: the role of intuition in our understanding of arithmetic (“intuition” in the specific sense of Kant and Hilbert). Parsons argues for a version of structuralism which is restricted by the condition that some paradigmatic structure should be presented that makes clear the actual existence of structures of the necessary sort. Parsons’ paradigmatic structure is the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein’s Philosophy of Mathematics: Felix Mühlhölzer in Conversation with Sebastian Grève.Felix Mühlhölzer - 2014 - Nordic Wittgenstein Review 3 (2):151-180.
    Sebastian Grève interviews Felix Mühlhölzer on his work on the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • One’s Own’ in the Other and the Other in ‘One’s Own.Jasmin Trächtler - 2022 - Grazer Philosophische Studien 99 (1):99-123.
    The questions of how we can understand others and how we can know what they feel, think and sense have repeatedly preoccupied Wittgenstein since the 1930s and especially in his last writings. In this article, the author will tackle these questions by focusing on the other as other or strange. For it is also the strangeness of others, their otherness as such, that makes it difficult and even impossible to recognize and understand their inner life. As she will show, such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Surveyability and Mathematical Certainty.Kai Michael Büttner - 2017 - Axiomathes 27 (1):113-128.
    The paper provides an interpretation of Wittgenstein’s claim that a mathematical proof must be surveyable. It will be argued that this claim specifies a precondition for the applicability of the word ‘proof’. Accordingly, the latter is applicable to a proof-pattern only if we can come to agree by mere observation whether or not the pattern possesses the relevant structural features. The claim is problematic. It does not imply any questionable finitist doctrine. But it cannot be said to articulate a feature (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Les conférences Hugues Leblanc 2010.Denis Fisette (ed.) - 2011
    Ce numéro thématique de la revue Philosophiques est consacré aux Conférences Hugues Leblanc qui ont eu lieu du 1er au 3 avril 2010 au Département de philosophie de l'Université du Québec à Montréal. À cette occasion, le conférencier invité était Kevin Mulligan, titulaire de la chaire de philosophie analytique au Département de philosophie de l'Université de Genève, qui a prononcé trois conférences sous le titre " Wittgenstein vs ses prédécesseurs austro-allemands ", publiées dans ce numéro. Mulligan y développe un de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein et le logicisme de Russell : Remarques critiques sur « A Mathematical Proof Must be Surveyable » de F. Mühlhölzer.Sébastien Gandon - 2012 - Philosophiques 39 (1):163-187.
    Ce texte discute certaines conclusions d’un article récent de F. Mülhölzer et vise à montrer que le logicisme russellien a les moyens de résister à la critique que Wittgenstein lui adresse dans la partie III des Remarques sur les fondements desmathématiques.This paper discusses some conclusions of a recent article from F.Mülhölzer. It aims at showing that Russell’s logicism has the means to overcome the criticisms Wittgenstein expounded in Remarks on the Foundations of Mathematics, part III.
    Download  
     
    Export citation  
     
    Bookmark  
  • Le « Wittgenstein intermédiaire » et les mathématiques modernes.Sören Stenlund & Anne-Marie Boisvert - 2012 - Philosophiques 39 (1):125-161.
    Dans cet article, j’essaie de montrer que le dépassement et le rejet du dogmatisme sont un aspect décisif du changement dans la pensée de Wittgenstein qui a eu lieu au début des années 30, quand il commence à mettre en valeur l’autonomie de la grammaire du langage et à parler d’images grammaticales et de jeux de langage en tant qu’objets de comparaison. En examinant certains traits fondamentaux de ce changement, je mettrai en évidence l’impulsion et les idées décisives que Wittgenstein (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Depth and Clarity * Felix Muhlholzer. Braucht die Mathematik eine Grundlegung? Eine Kommentar des Teils III von Wittgensteins Bemerkungen uber die Grundlagen der Mathematik [Does Mathematics need a Foundation? A Commentary on Part III of Wittgenstein's Remarks on the Foundations of Mathematics]. Frankfurt: Vittorio Klostermann, 2010. ISBN: 978-3-465-03667-8. Pp. xiv + 602. [REVIEW]Juliet Floyd - 2015 - Philosophia Mathematica 23 (2):255-276.
    Download  
     
    Export citation  
     
    Bookmark   3 citations