Switch to: References

Add citations

You must login to add citations.
  1. The Quasi-lattice of Indiscernible Elements.Mauri Cunha do Nascimento, Décio Krause & Hércules Araújo Feitosa - 2011 - Studia Logica 97 (1):101-126.
    The literature on quantum logic emphasizes that the algebraic structures involved with orthodox quantum mechanics are non distributive. In this paper we develop a particular algebraic structure, the quasi-lattice ( $${\mathfrak{I}}$$ -lattice), which can be modeled by an algebraic structure built in quasi-set theory $${\mathfrak{Q}}$$. This structure is non distributive and involve indiscernible elements. Thus we show that in taking into account indiscernibility as a primitive concept, the quasi-lattice that ‘naturally’ arises is non distributive.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hilbert's 6th Problem and Axiomatic Quantum Field Theory.Miklós Rédei - 2014 - Perspectives on Science 22 (1):80-97.
    This paper has two parts, a historical and a systematic. In the historical part it is argued that the two major axiomatic approaches to relativistic quantum field theory, the Wightman and Haag-Kastler axiomatizations, are realizations of the program of axiomatization of physical theories announced by Hilbert in his 6th of the 23 problems discussed in his famous 1900 Paris lecture on open problems in mathematics, if axiomatizing physical theories is interpreted in a soft and opportunistic sense suggested in 1927 by (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Editors' Introduction: The Third Life of Quantum Logic: Quantum Logic Inspired by Quantum Computing. [REVIEW]J. Michael Dunn, Lawrence S. Moss & Zhenghan Wang - 2013 - Journal of Philosophical Logic 42 (3):443-459.
    Download  
     
    Export citation  
     
    Bookmark   1 citation