Switch to: References

Citations of:

A compact representation of proofs

Studia Logica 46 (4):347 - 370 (1987)

Add citations

You must login to add citations.
  1. On the complexity of proof deskolemization.Matthias Baaz, Stefan Hetzl & Daniel Weller - 2012 - Journal of Symbolic Logic 77 (2):669-686.
    We consider the following problem: Given a proof of the Skolemization of a formula F, what is the length of the shortest proof of F? For the restriction of this question to cut-free proofs we prove corresponding exponential upper and lower bounds.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Direct deductive computation on discourse representation structures.Uwe Reyle & Dov M. Gabbay - 1994 - Linguistics and Philosophy 17 (4):343 - 390.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Peter Schroeder-Heister on Proof-Theoretic Semantics.Thomas Piecha & Kai F. Wehmeier (eds.) - 2024 - Springer.
    This open access book is a superb collection of some fifteen chapters inspired by Schroeder-Heister's groundbreaking work, written by leading experts in the field, plus an extensive autobiography and comments on the various contributions by Schroeder-Heister himself. For several decades, Peter Schroeder-Heister has been a central figure in proof-theoretic semantics, a field of study situated at the interface of logic, theoretical computer science, natural-language semantics, and the philosophy of language. -/- The chapters of which this book is composed discuss the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reciprocal Influences Between Proof Theory and Logic Programming.Dale Miller - 2019 - Philosophy and Technology 34 (1):75-104.
    The topics of structural proof theory and logic programming have influenced each other for more than three decades. Proof theory has contributed the notion of sequent calculus, linear logic, and higher-order quantification. Logic programming has introduced new normal forms of proofs and forced the examination of logic-based approaches to the treatment of bindings. As a result, proof theory has responded by developing an approach to proof search based on focused proof systems in which introduction rules are organized into two alternating (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Canonical proof nets for classical logic.Richard McKinley - 2013 - Annals of Pure and Applied Logic 164 (6):702-732.
    Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that there should be a canonical function from sequent proofs to proof nets, it should be possible to check the correctness of a net (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Focusing Gentzen’s LK Proof System.Chuck Liang & Dale Miller - 2024 - In Thomas Piecha & Kai F. Wehmeier (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics. Springer. pp. 275-313.
    Gentzen’s sequent calculi LK and LJ are landmark proof systems. They identify the structural rules of weakening and contraction as notable inference rules, and they allow for an elegant statement and proof of both cut elimination and consistency for classical and intuitionistic logics. Among the undesirable features of those sequent calculi is that their inferences rules are low-level and frequently permute over each other. As a result, large-scale structures within sequent calculus proofs are hard to identify. In this paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the form of witness terms.Stefan Hetzl - 2010 - Archive for Mathematical Logic 49 (5):529-554.
    We investigate the development of terms during cut-elimination in first-order logic and Peano arithmetic for proofs of existential formulas. The form of witness terms in cut-free proofs is characterized in terms of structured combinations of basic substitutions. Based on this result, a regular tree grammar computing witness terms is given and a class of proofs is shown to have only elementary cut-elimination.
    Download  
     
    Export citation  
     
    Bookmark  
  • Induction and Skolemization in saturation theorem proving.Stefan Hetzl & Jannik Vierling - 2023 - Annals of Pure and Applied Logic 174 (1):103167.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • CERES in higher-order logic.Stefan Hetzl, Alexander Leitsch & Daniel Weller - 2011 - Annals of Pure and Applied Logic 162 (12):1001-1034.
    We define a generalization of the first-order cut-elimination method CERES to higher-order logic. At the core of lies the computation of an set of sequents from a proof π of a sequent S. A refutation of in a higher-order resolution calculus can be used to transform cut-free parts of π into a cut-free proof of S. An example illustrates the method and shows that can produce meaningful cut-free proofs in mathematics that traditional cut-elimination methods cannot reach.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Simplified Proof of the Epsilon Theorems.Stefan Hetzl - forthcoming - Review of Symbolic Logic:1-16.
    We formulate Hilbert’s epsilon calculus in the context of expansion proofs. This leads to a simplified proof of the epsilon theorems by disposing of the need for prenexification, Skolemisation, and their respective inverse transformations. We observe that the natural notion of cut in the epsilon calculus is associative.
    Download  
     
    Export citation  
     
    Bookmark  
  • Classical proof forestry.Willem Heijltjes - 2010 - Annals of Pure and Applied Logic 161 (11):1346-1366.
    Classical proof forests are a proof formalism for first-order classical logic based on Herbrand’s Theorem and backtracking games in the style of Coquand. First described by Miller in a cut-free setting as an economical representation of first-order and higher-order classical proof, defining features of the forests are a strict focus on witnessing terms for quantifiers and the absence of inessential structure, or ‘bureaucracy’.This paper presents classical proof forests as a graphical proof formalism and investigates the possibility of composing forests by (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • TPS: A hybrid automatic-interactive system for developing proofs.Peter B. Andrews & Chad E. Brown - 2006 - Journal of Applied Logic 4 (4):367-395.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Herbrand's theorem as higher order recursion.Bahareh Afshari, Stefan Hetzl & Graham E. Leigh - 2020 - Annals of Pure and Applied Logic 171 (6):102792.
    Download  
     
    Export citation  
     
    Bookmark   1 citation