Switch to: References

Add citations

You must login to add citations.
  1. A superhigh diamond in the c.e. tt-degrees.Douglas Cenzer, Johanna Ny Franklin, Jiang Liu & Guohua Wu - 2011 - Archive for Mathematical Logic 50 (1-2):33-44.
    The notion of superhigh computably enumerable (c.e.) degrees was first introduced by (Mohrherr in Z Math Logik Grundlag Math 32: 5–12, 1986) where she proved the existence of incomplete superhigh c.e. degrees, and high, but not superhigh, c.e. degrees. Recent research shows that the notion of superhighness is closely related to algorithmic randomness and effective measure theory. Jockusch and Mohrherr proved in (Proc Amer Math Soc 94:123–128, 1985) that the diamond lattice can be embedded into the c.e. tt-degrees preserving 0 (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bounded low and high sets.Bernard A. Anderson, Barbara F. Csima & Karen M. Lange - 2017 - Archive for Mathematical Logic 56 (5-6):507-521.
    Anderson and Csima :245–264, 2014) defined a jump operator, the bounded jump, with respect to bounded Turing reducibility. They showed that the bounded jump is closely related to the Ershov hierarchy and that it satisfies an analogue of Shoenfield jump inversion. We show that there are high bounded low sets and low bounded high sets. Thus, the information coded in the bounded jump is quite different from that of the standard jump. We also consider whether the analogue of the Jump (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Almost everywhere domination and superhighness.Stephen G. Simpson - 2007 - Mathematical Logic Quarterly 53 (4):462-482.
    Let ω be the set of natural numbers. For functions f, g: ω → ω, we say f is dominated by g if f < g for all but finitely many n ∈ ω. We consider the standard “fair coin” probability measure on the space 2ω of in-finite sequences of 0's and 1's. A Turing oracle B is said to be almost everywhere dominating if, for measure 1 many X ∈ 2ω, each function which is Turing computable from X is (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Dynamic notions of genericity and array noncomputability.Benjamin Schaeffer - 1998 - Annals of Pure and Applied Logic 95 (1-3):37-69.
    We examine notions of genericity intermediate between 1-genericity and 2-genericity, especially in relation to the Δ20 degrees. We define a new kind of genericity, dynamic genericity, and prove that it is stronger than pb-genericity. Specifically, we show there is a Δ20 pb-generic degree below which the pb-generic degrees fail to be downward dense and that pb-generic degrees are downward dense below every dynamically generic degree. To do so, we examine the relation between genericity and array noncomputability, deriving some structural information (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mass problems and hyperarithmeticity.Joshua A. Cole & Stephen G. Simpson - 2007 - Journal of Mathematical Logic 7 (2):125-143.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if for all Y ∈ Q there exists X ∈ P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. Let [Formula: see text] be the lattice of weak degrees of mass problems associated with nonempty [Formula: see text] subsets of the Cantor (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • $\Pi _{1}^{0}$ Classes and Strong Degree Spectra of Relations.John Chisholm, Jennifer Chubb, Valentina S. Harizanov, Denis R. Hirschfeldt, Carl G. Jockusch, Timothy McNicholl & Sarah Pingrey - 2007 - Journal of Symbolic Logic 72 (3):1003 - 1018.
    We study the weak truth-table and truth-table degrees of the images of subsets of computable structures under isomorphisms between computable structures. In particular, we show that there is a low c.e. set that is not weak truth-table reducible to any initial segment of any scattered computable linear ordering. Countable $\Pi _{1}^{0}$ subsets of 2ω and Kolmogorov complexity play a major role in the proof.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Lowness properties and approximations of the jump.Santiago Figueira, André Nies & Frank Stephan - 2008 - Annals of Pure and Applied Logic 152 (1):51-66.
    We study and compare two combinatorial lowness notions: strong jump-traceability and well-approximability of the jump, by strengthening the notion of jump-traceability and super-lowness for sets of natural numbers. A computable non-decreasing unbounded function h is called an order function. Informally, a set A is strongly jump-traceable if for each order function h, for each input e one may effectively enumerate a set Te of possible values for the jump JA, and the number of values enumerated is at most h. A′ (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A classification of low c.e. sets and the Ershov hierarchy.Marat Faizrahmanov - forthcoming - Mathematical Logic Quarterly.
    In this paper, we prove several results about the Turing jumps of low c.e. sets. We show that only Δ‐levels of the Ershov Hierarchy can properly contain the Turing jumps of c.e. sets and that there exists an arbitrarily large computable ordinal with a normal notation such that the corresponding Δ‐level is proper for the Turing jump of some c.e. set. Next, we generalize the notion of jump traceability to the jump traceability with ‐ and ‐bound for every infinite computable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Lattice nonembeddings and initial segments of the recursively enumerable degrees.Rod Downey - 1990 - Annals of Pure and Applied Logic 49 (2):97-119.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Promptness Does Not Imply Superlow Cuppability.David Diamondstone - 2009 - Journal of Symbolic Logic 74 (4):1264 - 1272.
    A classical theorem in computability is that every promptly simple set can be cupped in the Turing degrees to some complete set by a low c.e. set. A related question due to A. Nies is whether every promptly simple set can be cupped by a superlow c.e. set, i. e. one whose Turing jump is truth-table reducible to the halting problem θ'. A negative answer to this question is provided by giving an explicit construction of a promptly simple set that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations