Switch to: References

Add citations

You must login to add citations.
  1. Characterizing Lowness for Demuth Randomness.Laurent Bienvenu, Rod Downey, Noam Greenberg, André Nies & Dan Turetsky - 2014 - Journal of Symbolic Logic 79 (2):526-560.
    We show the existence of noncomputable oracles which are low for Demuth randomness, answering a question in [15] (also Problem 5.5.19 in [34]). We fully characterize lowness for Demuth randomness using an appropriate notion of traceability. Central to this characterization is a partial relativization of Demuth randomness, which may be more natural than the fully relativized version. We also show that an oracle is low for weak Demuth randomness if and only if it is computable.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Demuth’s path to randomness.Antonín Kučera, André Nies & Christopher P. Porter - 2015 - Bulletin of Symbolic Logic 21 (3):270-305.
    Osvald Demuth studied constructive analysis from the viewpoint of the Russian school of constructive mathematics. In the course of his work he introduced various notions of effective null set which, when phrased in classical language, yield a number of major algorithmic randomness notions. In addition, he proved several results connecting constructive analysis and randomness that were rediscovered only much later.In this paper, we trace the path that took Demuth from his constructivist roots to his deep and innovative work on the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computably enumerable sets below random sets.André Nies - 2012 - Annals of Pure and Applied Logic 163 (11):1596-1610.
    We use Demuth randomness to study strong lowness properties of computably enumerable sets, and sometimes of Δ20 sets. A set A⊆N is called a base for Demuth randomness if some set Y Turing above A is Demuth random relative to A. We show that there is an incomputable, computably enumerable base for Demuth randomness, and that each base for Demuth randomness is strongly jump-traceable. We obtain new proofs that each computably enumerable set below all superlow Martin-Löf random sets is strongly (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Strong Jump-Traceability.Noam Greenberg & Dan Turetsky - 2018 - Bulletin of Symbolic Logic 24 (2):147-164.
    We review the current knowledge concerning strong jump-traceability. We cover the known results relating strong jump-traceability to randomness, and those relating it to degree theory. We also discuss the techniques used in working with strongly jump-traceable sets. We end with a section of open questions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Upper bounds on ideals in the computably enumerable Turing degrees.George Barmpalias & André Nies - 2011 - Annals of Pure and Applied Logic 162 (6):465-473.
    We study ideals in the computably enumerable Turing degrees, and their upper bounds. Every proper ideal in the c.e. Turing degrees has an incomplete upper bound. It follows that there is no prime ideal in the c.e. Turing degrees. This answers a question of Calhoun [2]. Every proper ideal in the c.e. Turing degrees has a low2 upper bound. Furthermore, the partial order of ideals under inclusion is dense.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A random set which only computes strongly jump-traceable C.e. Sets.Noam Greenberg - 2011 - Journal of Symbolic Logic 76 (2):700 - 718.
    We prove that there is a ${\mathrm{\Delta }}_{2}^{0}$ , 1-random set Y such that every computably enumerable set which is computable from Y is strongly jump-traceable. We also show that for every order function h there is an ω-c.e. random set Y such that every computably enumerable set which is computable from Y is h-jump-traceable. This establishes a correspondence between rates of jump-traceability and computability from ω-c.e. random sets.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Benign cost functions and lowness properties.Noam Greenberg & André Nies - 2011 - Journal of Symbolic Logic 76 (1):289 - 312.
    We show that the class of strongly jump-traceable c.e. sets can be characterised as those which have sufficiently slow enumerations so they obey a class of well-behaved cost functions, called benign. This characterisation implies the containment of the class of strongly jump-traceable c.e. Turing degrees in a number of lowness classes, in particular the classes of the degrees which lie below incomplete random degrees, indeed all LR-hard random degrees, and all ω-c.e. random degrees. The last result implies recent results of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • 2009 North American Annual Meeting of the Association for Symbolic Logic.Alasdair Urquhart - 2009 - Bulletin of Symbolic Logic 15 (4):441-464.
    Download  
     
    Export citation  
     
    Bookmark  
  • Demuth randomness and computational complexity.Antonín Kučera & André Nies - 2011 - Annals of Pure and Applied Logic 162 (7):504-513.
    Demuth tests generalize Martin-Löf tests in that one can exchange the m-th component a computably bounded number of times. A set fails a Demuth test if Z is in infinitely many final versions of the Gm. If we only allow Demuth tests such that GmGm+1 for each m, we have weak Demuth randomness.We show that a weakly Demuth random set can be high and , yet not superhigh. Next, any c.e. set Turing below a Demuth random set is strongly jump-traceable.We (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Randomness and computability: Open questions.Joseph S. Miller & André Nies - 2006 - Bulletin of Symbolic Logic 12 (3):390-410.
    It is time for a new paper about open questions in the currently very active area of randomness and computability. Ambos-Spies and Kučera presented such a paper in 1999 [1]. All the question in it have been solved, except for one: is KL-randomness different from Martin-Löf randomness? This question is discussed in Section 6.Not all the questions are necessarily hard—some simply have not been tried seriously. When we think a question is a major one, and therefore likely to be hard, (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On strongly jump traceable reals.Keng Meng Ng - 2008 - Annals of Pure and Applied Logic 154 (1):51-69.
    In this paper we show that there is no minimal bound for jump traceability. In particular, there is no single order function such that strong jump traceability is equivalent to jump traceability for that order. The uniformity of the proof method allows us to adapt the technique to showing that the index set of the c.e. strongly jump traceables is image-complete.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mass problems and hyperarithmeticity.Joshua A. Cole & Stephen G. Simpson - 2007 - Journal of Mathematical Logic 7 (2):125-143.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if for all Y ∈ Q there exists X ∈ P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. Let [Formula: see text] be the lattice of weak degrees of mass problems associated with nonempty [Formula: see text] subsets of the Cantor (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations