Switch to: References

Add citations

You must login to add citations.
  1. Theorems of hyperarithmetic analysis and almost theorems of hyperarithmetic analysis.James S. Barnes, Jun le Goh & Richard A. Shore - 2022 - Bulletin of Symbolic Logic 28 (1):133-149.
    Theorems of hyperarithmetic analysis occupy an unusual neighborhood in the realms of reverse mathematics and recursion-theoretic complexity. They lie above all the fixed iterations of the Turing jump but below ATR $_{0}$. There is a long history of proof-theoretic principles which are THAs. Until the papers reported on in this communication, there was only one mathematical example. Barnes, Goh, and Shore [1] analyze an array of ubiquity theorems in graph theory descended from Halin’s [9] work on rays in graphs. They (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Searching for an analogue of atr0 in the Weihrauch lattice.Takayuki Kihara, Alberto Marcone & Arno Pauly - 2020 - Journal of Symbolic Logic 85 (3):1006-1043.
    There are close similarities between the Weihrauch lattice and the zoo of axiom systems in reverse mathematics. Following these similarities has often allowed researchers to translate results from one setting to the other. However, amongst the big five axiom systems from reverse mathematics, so far $\mathrm {ATR}_0$ has no identified counterpart in the Weihrauch degrees. We explore and evaluate several candidates, and conclude that the situation is complicated.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Set existence principles and closure conditions: unravelling the standard view of reverse mathematics.Benedict Eastaugh - 2019 - Philosophia Mathematica 27 (2):153-176.
    It is a striking fact from reverse mathematics that almost all theorems of countable and countably representable mathematics are equivalent to just five subsystems of second order arithmetic. The standard view is that the significance of these equivalences lies in the set existence principles that are necessary and sufficient to prove those theorems. In this article I analyse the role of set existence principles in reverse mathematics, and argue that they are best understood as closure conditions on the powerset of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Almost Theorems of Hyperarithmetic Analysis.Richard A. Shore - forthcoming - Journal of Symbolic Logic:1-33.
    Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing Jump but below ATR $_{0}$ (and so $\Pi _{1}^{1}$ -CA $_{0}$ or the hyperjump). There is a long history of proof theoretic principles which are THAs. Until Barnes, Goh, and Shore [ta] revealed an array of theorems in graph theory living in this neighborhood, there was only one mathematical denizen. In (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Transfinite recursion in higher reverse mathematics.Noah Schweber - 2015 - Journal of Symbolic Logic 80 (3):940-969.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Strength of an Axiom of Finite Choice for Branches in Trees.G. O. H. Jun Le - 2023 - Journal of Symbolic Logic 88 (4):1367-1386.
    In their logical analysis of theorems about disjoint rays in graphs, Barnes, Shore, and the author (hereafter BGS) introduced a weak choice scheme in second-order arithmetic, called the $\Sigma ^1_1$ axiom of finite choice (hereafter finite choice). This is a special case of the $\Sigma ^1_1$ axiom of choice ( $\Sigma ^1_1\text {-}\mathsf {AC}_0$ ) introduced by Kreisel. BGS showed that $\Sigma ^1_1\text {-}\mathsf {AC}_0$ suffices for proving many of the aforementioned theorems in graph theory. While it is not known (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The strength of Jullien's indecomposability theorem.Itay Neeman - 2008 - Journal of Mathematical Logic 8 (1):93-119.
    Jullien's indecomposability theorem states that if a scattered countable linear order is indecomposable, then it is either indecomposable to the left, or indecomposable to the right. The theorem was shown by Montalbán to be a theorem of hyperarithmetic analysis. We identify the strength of the theorem relative to standard reverse mathematics markers. We show that it lies strictly between weak [Formula: see text] choice and [Formula: see text] comprehension.
    Download  
     
    Export citation  
     
    Bookmark   5 citations