Citations of:
Add citations
You must login to add citations.


As stochastic independence is essential to the mathematical development of probability theory, it seems that any foundational work on probability should be able to account for this property. Bayesian decision theory appears to be wanting in this respect. Savage’s postulates on preferences under uncertainty entail a subjective expected utility representation, and this asserts only the existence and uniqueness of a subjective probability measure, regardless of its properties. What is missing is a preference condition corresponding to stochastic independence. To fill this (...) 

An obituary of Philippe Mongin (19502020). 

We give two social aggregation theorems under conditions of risk, one for constant population cases, the other an extension to variable populations. Intra and interpersonal welfare comparisons are encoded in a single ‘individual preorder’. The theorems give axioms that uniquely determine a social preorder in terms of this individual preorder. The social preorders described by these theorems have features that may be considered characteristic of Harsanyistyle utilitarianism, such as indifference to ex ante and ex post equality. However, the theorems are (...) 

We present an abstract social aggregation theorem. Society, and each individual, has a preorder that may be interpreted as expressing values or beliefs. The preorders are allowed to violate both completeness and continuity, and the population is allowed to be infinite. The preorders are only assumed to be represented by functions with values in partially ordered vector spaces, and whose product has convex range. This includes all preorders that satisfy strong independence. Any Pareto indifferent social preorder is then shown to (...) 

Stochastic independence has a complex status in probability theory. It is not part of the definition of a probability measure, but it is nonetheless an essential property for the mathematical development of this theory. Bayesian decision theorists such as Savage can be criticized for being silent about stochastic independence. From their current preference axioms, they can derive no more than the definitional properties of a probability measure. In a new framework of twofold uncertainty, we introduce preference axioms that entail not (...) 

We investigate the conflict between the ex ante and ex post criteria of social welfare in a new framework of individual and social decisions, which distinguishes between two sources of uncertainty, here interpreted as an objective and a subjective source respectively. This framework makes it possible to endow the individuals and society not only with ex ante and ex post preferences, as is usually done, but also with interim preferences of two kinds, and correspondingly, to introduce interim forms of the (...) 