Switch to: References

Add citations

You must login to add citations.
  1. Generic Generalized Rosser Fixed Points.Dick H. J. de Jongh & Franco Montagna - 1987 - Studia Logica 46 (2):193-203.
    To the standard propositional modal system of provability logic constants are added to account for the arithmetical fixed points introduced by Bernardi-Montagna in [5]. With that interpretation in mind, a system LR of modal propositional logic is axiomatized, a modal completeness theorem is established for LR and, after that, a uniform arithmetical completeness theorem with respect to PA is obtained for LR.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The provability logics of recursively enumerable theories extending peano arithmetic at arbitrary theories extending peano arithmetic.Albert Visser - 1984 - Journal of Philosophical Logic 13 (1):97 - 113.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Universal computably enumerable equivalence relations.Uri Andrews, Steffen Lempp, Joseph S. Miller, Keng Meng Ng, Luca San Mauro & Andrea Sorbi - 2014 - Journal of Symbolic Logic 79 (1):60-88.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Word problems and ceers.Valentino Delle Rose, Luca San Mauro & Andrea Sorbi - 2020 - Mathematical Logic Quarterly 66 (3):341-354.
    This note addresses the issue as to which ceers can be realized by word problems of computably enumerable (or, simply, c.e.) structures (such as c.e. semigroups, groups, and rings), where being realized means to fall in the same reducibility degree (under the notion of reducibility for equivalence relations usually called “computable reducibility”), or in the same isomorphism type (with the isomorphism induced by a computable function), or in the same strong isomorphism type (with the isomorphism induced by a computable permutation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Graphs realised by r.e. equivalence relations.Alexander Gavruskin, Sanjay Jain, Bakhadyr Khoussainov & Frank Stephan - 2014 - Annals of Pure and Applied Logic 165 (7-8):1263-1290.
    We investigate dependence of recursively enumerable graphs on the equality relation given by a specific r.e. equivalence relation on ω. In particular we compare r.e. equivalence relations in terms of graphs they permit to represent. This defines partially ordered sets that depend on classes of graphs under consideration. We investigate some algebraic properties of these partially ordered sets. For instance, we show that some of these partial ordered sets possess atoms, minimal and maximal elements. We also fully describe the isomorphism (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Provability in finite subtheories of pa and relative interpretability: A modal investigation.Franco Montagna - 1987 - Journal of Symbolic Logic 52 (2):494-511.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The theory of ceers computes true arithmetic.Uri Andrews, Noah Schweber & Andrea Sorbi - 2020 - Annals of Pure and Applied Logic 171 (8):102811.
    We show that the theory of the partial order of computably enumerable equivalence relations (ceers) under computable reduction is 1-equivalent to true arithmetic. We show the same result for the structure comprised of the dark ceers and the structure comprised of the light ceers. We also show the same for the structure of L-degrees in the dark, light, or complete structure. In each case, we show that there is an interpretable copy of (N, +, \times) .
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Effective Inseparability, Lattices, and Preordering Relations.Uri Andrews & Andrea Sorbi - 2021 - Review of Symbolic Logic 14 (4):838-865.
    We study effectively inseparable (abbreviated as e.i.) prelattices (i.e., structures of the form$L = \langle \omega, \wedge, \vee,0,1,{ \le _L}\rangle$whereωdenotes the set of natural numbers and the following four conditions hold: (1)$\wedge, \vee$are binary computable operations; (2)${ \le _L}$is a computably enumerable preordering relation, with$0{ \le _L}x{ \le _L}1$for everyx; (3) the equivalence relation${ \equiv _L}$originated by${ \le _L}$is a congruence onLsuch that the corresponding quotient structure is a nontrivial bounded lattice; (4) the${ \equiv _L}$-equivalence classes of 0 and 1 (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Weakly precomplete computably enumerable equivalence relations.Serikzhan Badaev & Andrea Sorbi - 2016 - Mathematical Logic Quarterly 62 (1-2):111-127.
    Using computable reducibility ⩽ on equivalence relations, we investigate weakly precomplete ceers (a “ceer” is a computably enumerable equivalence relation on the natural numbers), and we compare their class with the more restricted class of precomplete ceers. We show that there are infinitely many isomorphism types of universal (in fact uniformly finitely precomplete) weakly precomplete ceers, that are not precomplete; and there are infinitely many isomorphism types of non‐universal weakly precomplete ceers. Whereas the Visser space of a precomplete ceer always (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The complexity of index sets of classes of computably enumerable equivalence relations.Uri Andrews & Andrea Sorbi - 2016 - Journal of Symbolic Logic 81 (4):1375-1395.
    Let$ \le _c $be computable the reducibility on computably enumerable equivalence relations. We show that for every ceerRwith infinitely many equivalence classes, the index sets$\left\{ {i:R_i \le _c R} \right\}$,$\left\{ {i:R_i \ge _c R} \right\}$, and$\left\{ {i:R_i \equiv _c R} \right\}$are${\rm{\Sigma }}_3^0$complete, whereas in caseRhas only finitely many equivalence classes, we have that$\left\{ {i:R_i \le _c R} \right\}$is${\rm{\Pi }}_2^0$complete, and$\left\{ {i:R \ge _c R} \right\}$ is${\rm{\Sigma }}_2^0$complete. Next, solving an open problem from [1], we prove that the index set of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Remarks on Uniformly Finitely Precomplete Positive Equivalences.V. Yu Shavrukov - 1996 - Mathematical Logic Quarterly 42 (1):67-82.
    The paper contains some observations on e-complete, precomplete, and uniformly finitely precomplete r. e. equivalence relations. Among these are a construction of a uniformly finitely precomplete r. e. equivalence which is neither e- nor precomplete, an extension of Lachlan's theorem that all precomplete r. e. equivalences are isomorphic, and a characterization of sets of fixed points of endomorphisms of uniformly finitely precomplete r. e. equivalences.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A note on uniform density in weak arithmetical theories.Duccio Pianigiani & Andrea Sorbi - 2020 - Archive for Mathematical Logic 60 (1):211-225.
    Answering a question raised by Shavrukov and Visser :569–582, 2014), we show that the lattice of \-sentences ) over any computable enumerable consistent extension T of \ is uniformly dense. We also show that for every \ and \ refer to the known hierarchies of arithmetical formulas introduced by Burr for intuitionistic arithmetic) the lattices of \-sentences over any c.e. consistent extension T of the intuitionistic version of Robinson Arithmetic \ are uniformly dense. As an immediate consequence of the proof, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Universal recursion theoretic properties of R.e. Preordered structures.Franco Montagna & Andrea Sorbi - 1985 - Journal of Symbolic Logic 50 (2):397-406.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Generic generalized Rosser fixed points.Dick H. J. Jongh & Franco Montagna - 1987 - Studia Logica 46 (2):193 - 203.
    To the standard propositional modal system of provability logic constants are added to account for the arithmetical fixed points introduced by Bernardi-Montagna in [5]. With that interpretation in mind, a system LR of modal propositional logic is axiomatized, a modal completeness theorem is established for LR and, after that, a uniform arithmetical (Solovay-type) completeness theorem with respect to PA is obtained for LR.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)On Some Properties of Recursively Enumerable Equivalence Relations.Stefano Baratella - 1989 - Mathematical Logic Quarterly 35 (3):261-268.
    Download  
     
    Export citation  
     
    Bookmark  
  • Combinatory completeness without classical equality.David Ballard - 1988 - Journal of Philosophical Logic 17 (2):115 - 132.
    Download  
     
    Export citation  
     
    Bookmark  
  • Jumps of computably enumerable equivalence relations.Uri Andrews & Andrea Sorbi - 2018 - Annals of Pure and Applied Logic 169 (3):243-259.
    Download  
     
    Export citation  
     
    Bookmark   3 citations