Switch to: References

Add citations

You must login to add citations.
  1. Physical basis for the emergence of autopoiesis, cognition and knowledge.W. P. Hall - 2011 - Kororoit Institute Working Papers (2):1-63.
    Paper type: Conceptual perspective. Background(s): Physics, biology, epistemology Perspectives: Theory of autopoietic systems, Popperian evolutionary epistemology and the biology of cognition. Context: This paper is a contribution to developing the theories of hierarchically complex living systems and the natures of knowledge in such systems. Problem: Dissonance between the literatures of knowledge management and organization theory and my observations of the living organization led to consideration of foundation questions: What does it mean to be alive? What is knowledge? How are life (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Signal‐regulated systems and networks.Terence L. van Zyl & Elizabeth M. Ehlers - 2010 - Complexity 15 (6):50-63.
    Download  
     
    Export citation  
     
    Bookmark  
  • Studies on Molecular Mechanisms of Prebiotic Systems.Walter Riofrio - 2012 - Foundations of Science 17 (3):277-289.
    Lately there has been a growing interest in evolutionary studies concerning how the regularities and patterns found in the living cell could have emerged spontaneously by way of self-assembly and self-organization. It is reasonable to postulate that the chemical compounds found in the primitive Earth would have mostly been very simple in nature, and would have been immersed in the natural dynamics of the physical world, some of which would have involved self-organization. It seems likely that some molecular processes self-organized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The world as evolving information.Dr Carlos Gershenson - unknown
    This paper discusses the benefits of describing the world as information, especially in the study of the evolution of life and cognition. Traditional studies encounter problems because it is difficult to describe life and cognition in terms of matter and energy, since their laws are valid only at the physical scale. However, if matter and energy, as well as life and cognition, are described in terms of information, evolution can be described consistently as information becoming more complex. The paper presents (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)The alkaline solution to the emergence of life: Energy, entropy and early evolution.Michael J. Russell - 2007 - Acta Biotheoretica 55 (2):133-179.
    The Earth agglomerates and heats. Convection cells within the planetary interior expedite the cooling process. Volcanoes evolve steam, carbon dioxide, sulfur dioxide and pyrophosphate. An acidulous Hadean ocean condenses from the carbon dioxide atmosphere. Dusts and stratospheric sulfurous smogs absorb a proportion of the Sun’s rays. The cooled ocean leaks into the stressed crust and also convects. High temperature acid springs, coupled to magmatic plumes and spreading centers, emit iron, manganese, zinc, cobalt and nickel ions to the ocean. Away from (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Téléologie et fonctions en biologie. Une approche non causale des explications téléofonctionnelles.Alberto Molina Pérez - 2017 - Dissertation, Universidad Autónoma de Madrid
    This dissertation focuses on teleology and functions in biology. More precisely, it focuses on the scientific legitimacy of teleofunctional attributions and explanations in biology. It belongs to a multi-faceted debate that can be traced back to at least the 1970s. One aspect of the debate concerns the naturalization of functions. Most authors try to reduce, translate or explain functions and teleology in terms of efficient causes so that they find their place in the framework of the natural sciences. Our approach (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • First principles in the life sciences: the free-energy principle, organicism, and mechanism.Matteo Colombo & Cory Wright - 2021 - Synthese 198 (14):3463–3488.
    The free-energy principle states that all systems that minimize their free energy resist a tendency to physical disintegration. Originally proposed to account for perception, learning, and action, the free-energy principle has been applied to the evolution, development, morphology, anatomy and function of the brain, and has been called a postulate, an unfalsifiable principle, a natural law, and an imperative. While it might afford a theoretical foundation for understanding the relationship between environment, life, and mind, its epistemic status is unclear. Also (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Which forces reduce entropy production?Alfred Hubler - 2014 - Complexity 19 (5):6-7.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Consciousness as a Physical Process Caused by the Organization of Energy in the Brain.Robert Pepperell - 2018 - Frontiers in Psychology 9:393597.
    To explain consciousness as a physical process we must acknowledge the role of energy in the brain. Energetic activity is fundamental to all physical processes and causally drives biological behavior. Recent neuroscientific evidence can be interpreted in a way that suggests consciousness is a product of the organization of energetic activity in the brain. The nature of energy itself, though, remains largely mysterious, and we do not fully understand how it contributes to brain function or consciousness. According to the principle (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Noise induced phase transition between maximum entropy production structures and minimum entropy production structures?Alfred Hubler, Andrey Belkin & Alexey Bezryadin - 2015 - Complexity 20 (3):8-11.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hylomorphism and the Metabolic Closure Conception of Life.James DiFrisco - 2014 - Acta Biotheoretica 62 (4):499-525.
    This paper examines three exemplary theories of living organization with respect to their common feature of defining life in terms of metabolic closure: autopoiesis, (M, R) systems, and chemoton theory. Metabolic closure is broadly understood to denote the property of organized chemical systems that each component necessary for the maintenance of the system is produced from within the system itself, except for an input of energy. It is argued that two of the theories considered—autopoiesis and (M, R) systems—participate in a (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations