Switch to: References

Add citations

You must login to add citations.
  1. The Aristotelian Continuum. A Formal Characterization.Peter Roeper - 2006 - Notre Dame Journal of Formal Logic 47 (2):211-232.
    While the classical account of the linear continuum takes it to be a totality of points, which are its ultimate parts, Aristotle conceives of it as continuous and infinitely divisible, without ultimate parts. A formal account of this conception can be given employing a theory of quantification for nonatomic domains and a theory of region-based topology.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Continuous Lattices and Whiteheadian Theory of Space.Thomas Mormann - 1998 - Logic and Logical Philosophy 6:35 - 54.
    In this paper a solution of Whitehead’s problem is presented: Starting with a purely mereological system of regions a topological space is constructed such that the class of regions is isomorphic to the Boolean lattice of regular open sets of that space. This construction may be considered as a generalized completion in analogy to the well-known Dedekind completion of the rational numbers yielding the real numbers . The argument of the paper relies on the theories of continuous lattices and “pointless” (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mereology.Achille C. Varzi - 2016 - Stanford Encyclopedia of Philosophy.
    An overview of contemporary part-whole theories, with reference to both their axiomatic developments and their philosophical underpinnings.
    Download  
     
    Export citation  
     
    Bookmark   216 citations  
  • (1 other version)Is Weak Supplementation analytic?Aaron Cotnoir - 2019 - Synthese:1-17.
    Mereological principles are often controversial; perhaps the most stark contrast is between those who claim that Weak Supplementation is analytic—constitutive of our notion of proper parthood—and those who argue that the principle is simply false, and subject to many counterexamples. The aim of this paper is to diagnose the source of this dispute. I’ll suggest that the dispute has arisen by participants failing to be sensitive to two different conceptions of proper parthood: the outstripping conception and the non-identity conception. I’ll (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Towards a topological philosophy.Bartłomiej Skowron, Janusz Kaczmarek & Krzysztof Wójtowicz - 2023 - Metaphilosophy 54 (5):679-696.
    This article examines the use of mathematical concepts in philosophy, focusing on topology, which may be viewed as a modern supplement to geometry. We show that Plato and Parmenides were already employing geometric ideas in their research, and discuss three examples of the application of topology to philosophical problems: the first concerns the analysis of the Cartesian distinction between res extensa and res cogitans, the second the ontology of possible worlds of Wittgenstein's Tractatus, and the third Leibniz's monadology. We also (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mereotopology without Mereology.Peter Forrest - 2010 - Journal of Philosophical Logic 39 (3):229-254.
    Mereotopology is that branch of the theory of regions concerned with topological properties such as connectedness. It is usually developed by considering the parthood relation that characterizes the, perhaps non-classical, mereology of Space (or Spacetime, or a substance filling Space or Spacetime) and then considering an extra primitive relation. My preferred choice of mereotopological primitive is interior parthood . This choice will have the advantage that filters may be defined with respect to it, constructing “points”, as Peter Roeper has done (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations