Switch to: References

Add citations

You must login to add citations.
  1. Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why Make Things Simple When You Can Make Them Complicated? An Appreciation of Lewis Carroll’s Symbolic Logic.Amirouche Moktefi - 2020 - Logica Universalis 15 (3):359-379.
    Lewis Carroll published a system of logic in the symbolic tradition that developed in his time. Carroll’s readers may be puzzled by his system. On the one hand, it introduced innovations, such as his logic notation, his diagrams and his method of trees, that secure Carroll’s place on the path that shaped modern logic. On the other hand, Carroll maintained the existential import of universal affirmative Propositions, a feature that is rather characteristic of traditional logic. The object of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Combinatorial Bitstring Semantics for Arbitrary Logical Fragments.Lorenz6 Demey & Hans5 Smessaert - 2018 - Journal of Philosophical Logic 47 (2):325-363.
    Logical geometry systematically studies Aristotelian diagrams, such as the classical square of oppositions and its extensions. These investigations rely heavily on the use of bitstrings, which are compact combinatorial representations of formulas that allow us to quickly determine their Aristotelian relations. However, because of their general nature, bitstrings can be applied to a wide variety of topics in philosophical logic beyond those of logical geometry. Hence, the main aim of this paper is to present a systematic technique for assigning bitstrings (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Why the Hexagon of Opposition is Really a Triangle: Logical Structures as Geometric Shapes.Ori Milstein - 2024 - Logica Universalis 18 (1):113-124.
    This paper suggests a new approach (with old roots) to the study of the connection between logic and geometry. Traditionally, most logic diagrams associate only vertices of shapes with propositions. The new approach, which can be dubbed ’full logical geometry’, aims to associate every element of a shape (edges, faces, etc.) with a proposition. The roots of this approach can be found in the works of Carroll, Jacoby, and more recently, Dubois and Prade. However, its potential has not been duly (...)
    Download  
     
    Export citation  
     
    Bookmark