Switch to: References

Add citations

You must login to add citations.
  1. Quantifying Statements (Why ‘Every Thing’ is Not ‘Everything’, Among Other ‘Thing’s).Fabien Schang - 2024 - Logica Universalis 18 (1):185-207.
    The present paper wants to develop a formal semantics about a special class of formulas: quantifying statements, which are a kind of predicative statements where both subject- and predicate terms are quantifier expressions like ‘everything’, ‘something’, and ‘nothing’. After showing how talking about nothingness makes sense despite philosophical objections, I contend that there are two sorts of meaning in phrases including ‘thing’, viz. as an individual (e.g. ‘some thing’) or as a property (e.g. ‘something’). Then I display two kinds of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Morphisms Between Aristotelian Diagrams.Alexander De Klerck, Leander Vignero & Lorenz Demey - 2024 - Logica Universalis 18 (1):49-83.
    In logical geometry, Aristotelian diagrams are studied in a precise and systematic way. Although there has recently been a good amount of progress in logical geometry, it is still unknown which underlying mathematical framework is best suited for formalizing the study of these diagrams. Hence, in this paper, the main aim is to formulate such a framework, using the powerful language of category theory. We build multiple categories, which all have Aristotelian diagrams as their objects, while having different kinds of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Logical Geometry of Geometric Angles.Hans Smessaert & Lorenz Demey - 2022 - Logica Universalis 16 (4):581-601.
    In this paper we provide an analysis of the logical relations within the conceptual or lexical field of angles in 2D geometry. The basic tripartition into acute/right/obtuse angles is extended in two steps: first zero and straight angles are added, and secondly reflex and full angles are added, in both cases extending the logical space of angles. Within the framework of logical geometry, the resulting partitions of these logical spaces yield bitstring semantics of increasing complexity. These bitstring analyses allow a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Judgmental Reconstruction of some of Professor Woleński’s logical and philosophical writings.Fabien Schang - 2020 - Studia Humana 9 (3):72-103.
    Roman Suszko said that “Obviously, any multiplication of logical values is a mad idea and, in fact, Łukasiewicz did not actualize it.” The aim of the present paper is to qualify this ‘obvious’ statement through a number of logical and philosophical writings by Professor Jan Woleński, all focusing on the nature of truth-values and their multiple uses in philosophy. It results in a reconstruction of such an abstract object, doing justice to what Suszko held a ‘mad’ project within a generalized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic Diagrams, Sacred Geometry and Neural Networks.Jens Lemanski - 2019 - Logica Universalis 13 (4):495-513.
    In early modernity, one can find many spatial logic diagrams whose geometric forms share a family resemblance with religious art and symbols. The family resemblance these diagrams bear in form is often based on a vesica piscis or on a cross: Both logic diagrams and spiritual symbols focus on the intersection or conjunction of two or more entities, e.g. subject and predicate, on the one hand, or god and man, on the other. This paper deals with the development and function (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • End of the square?Fabien Schang - 2018 - South American Journal of Logic 4 (2):485-505.
    It has been recently argued that the well-known square of opposition is a gathering that can be reduced to a one-dimensional figure, an ordered line segment of positive and negative integers [3]. However, one-dimensionality leads to some difficulties once the structure of opposed terms extends to more complex sets. An alternative algebraic semantics is proposed to solve the problem of dimensionality in a systematic way, namely: partition (or bitstring) semantics. Finally, an alternative geometry yields a new and unique pattern of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Logical Organization of Philosophical Concepts.Fabien Schang - 2024 - Topoi 43 (5):1593-1605.
    It is argued that the theory of opposition is in position to contribute as a formal method of conceptual engineering, by means of an increasing dichotomy-making process that augments the number of elements into any structured lexical field. After recalling the roots of this theory and its logical tenets, it is shown how the processes of expansion and contraction of discourse can modify a lexical field and, with it, our collective representation of ideas. This theory can also bring some order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Varieties of Cubes of Opposition.Claudio E. A. Pizzi - 2024 - Logica Universalis 18 (1):157-183.
    The objects called cubes of opposition have been presented in the literature in discordant ways. The aim of the paper is to offer a survey of such various kinds of cubes and evaluate their relation with an object, here called “Aristotelian cube”, which consists of two Aristotelian squares and four squares which are semiaristotelian, i.e. are such that their vertices are linked by some so-called Aristotelian relation. Two paradigm cases of Aristotelian squares are provided by propositions written in the language (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Contrariety re-encountered: nonstandard contraries and internal negation **.Lloyd Humberstone - 2023 - Logic Journal of the IGPL 31 (6):1084-1134.
    This discussion explores the possibility of distinguishing a tighter notion of contrariety evident in the Square of Opposition, especially in its modal incarnations, than as that binary relation holding statements that cannot both be true, with or without the added rider ‘though can both be false’. More than one theorist has voiced the intuition that the paradigmatic contraries of the traditional Square are related in some such tighter way—involving the specific role played by negation in contrasting them—that distinguishes them from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Schopenhauer’s Partition Diagrams and Logical Geometry.Jens Lemanski & Lorenz Demey - 2021 - In Stapleton G. Basu A. (ed.), Diagrams 2021: Diagrammatic Representation and Inference. pp. 149-165.
    The paper examines Schopenhauer’s complex diagrams from the Berlin Lectures of the 1820 s, which show certain partitions of classes. Drawing upon ideas and techniques from logical geometry, we show that Schopenhauer’s partition diagrams systematically give rise to a special type of Aristotelian diagrams, viz. (strong) α -structures.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Calculus CL as a Formal System.Jens Lemanski & Ludger Jansen - 2020 - In Ahti Veikko Pietarinen, Peter Chapman, Leonie Bosveld-de Smet, Valeria Giardino, James Corter & Sven Linker (eds.), Diagrammatic Representation and Inference. Diagrams 2020. Lecture Notes in Computer Science, vol 12169. 2020. pp. 445-460.
    In recent years CL diagrams inspired by Lange’s Cubus Logicus have been used in various contexts of diagrammatic reasoning. However, whether CL diagrams can also be used as a formal system seemed questionable. We present a CL diagram as a formal system, which is a fragment of propositional logic. Syntax and semantics are presented separately and a variant of bitstring semantics is applied to prove soundness and completeness of the system.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Hexagon of Opposition for the Theism/Atheism Debate.Lorenz Demey - 2019 - Philosophia 47 (2):387-394.
    Burgess-Jackson has recently suggested that the debate between theism and atheism can be represented by means of a classical square of opposition. However, in light of the important role that the position of agnosticism plays in Burgess-Jackson’s analysis, it is quite surprising that this position is not represented in the proposed square of opposition. I therefore argue that the square of opposition should be extended to a slightly larger, more complex Aristotelian diagram, viz., a hexagon of opposition. Since this hexagon (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Porphyrian Tree and Multiple Inheritance. A Rejoinder to Tylman on Computer Science and Philosophy.Lorenz Demey - 2018 - Foundations of Science 23 (1):173-180.
    Tylman has recently pointed out some striking conceptual and methodological analogies between philosophy and computer science. In this paper, I focus on one of Tylman’s most convincing cases, viz. the similarity between Plato’s theory of Ideas and the object-oriented programming paradigm, and analyze it in some more detail. In particular, I argue that the platonic doctrine of the Porphyrian tree corresponds to the fact that most object-oriented programming languages do not support multiple inheritance. This analysis further reinforces Tylman’s point regarding (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Individuals, Existence, and Existential Commitment in Visual Reasoning.Jens Lemanski - 2024 - Open Philosophy 7 (1):1-25.
    This article examines the evolution of the concept of existence in modern visual representation and reasoning, highlighting important milestones. In the late eighteenth century, during the so-called golden age of visual reasoning, nominalism reigned supreme and there was limited scope for existential import or individuals in logic diagrams. By the late nineteenth century, a form of realism had taken hold, whose existential commitments continue to dominate many areas in logic and visual reasoning to this day. Physical, metaphysical, epistemological, and linguistic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Aristotelian and Boolean Properties of the Keynes-Johnson Octagon of Opposition.Lorenz Demey & Hans Smessaert - 2024 - Journal of Philosophical Logic 53 (5):1265-1290.
    Around the turn of the 20th century, Keynes and Johnson extended the well-known square of opposition to an octagon of opposition, in order to account for subject negation (e.g., statements like ‘all non-S are P’). The main goal of this paper is to study the logical properties of the Keynes-Johnson (KJ) octagons of opposition. In particular, we will discuss three concrete examples of KJ octagons: the original one for subject-negation, a contemporary one from knowledge representation, and a third one (hitherto (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Aristotelian Diagrams in the Debate on Future Contingents: A Methodological Reflection on Hess's Open Future Square of Opposition.Lorenz Demey - 2019 - Sophia 58 (3):321-329.
    In the recent debate on future contingents and the nature of the future, authors such as G. A. Boyd, W. L. Craig, and E. Hess have made use of various logical notions, such as the Aristotelian relations of contradiction and contrariety, and the ‘open future square of opposition.’ My aim in this paper is not to enter into this philosophical debate itself, but rather to highlight, at a more abstract methodological level, the important role that Aristotelian diagrams can play in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Bitstring Semantics for Calculus CL.Fabien Schang & Jens Lemanski - 2022 - In Jean-Yves Beziau & Ioannis Vandoulakis (eds.), The Exoteric Square of Opposition. Birkhauser. pp. 171–193.
    The aim of this chapter is to develop a semantics for Calculus CL. CL is a diagrammatic calculus based on a logic machine presented by Johann Christian Lange in 1714, which combines features of Euler-, Venn-type, tree diagrams, squares of oppositions etc. In this chapter, it is argued that a Boolean account of formal ontology in CL helps to deal with logical oppositions and inferences of extended syllogistics. The result is a combination of Lange’s diagrams with an algebraic semantics of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Aristotelian diagrams for semantic and syntactic consequence.Lorenz Demey - 2018 - Synthese 198 (1):187-207.
    Several authors have recently studied Aristotelian diagrams for various metatheoretical notions from logic, such as tautology, satisfiability, and the Aristotelian relations themselves. However, all these metalogical Aristotelian diagrams focus on the semantic (model-theoretical) perspective on logical consequence, thus ignoring the complementary, and equally important, syntactic (proof-theoretical) perspective. In this paper, I propose an explanation for this discrepancy, by arguing that the metalogical square of opposition for semantic consequence exhibits a natural analogy to the well-known square of opposition for the categorical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logic-Sensitivity and Bitstring Semantics in the Square of Opposition.Lorenz Demey & Stef Frijters - 2023 - Journal of Philosophical Logic 52 (6):1703-1721.
    This paper explores the interplay between logic-sensitivity and bitstring semantics in the square of opposition. Bitstring semantics is a combinatorial technique for representing the formulas that appear in a logical diagram, while logic-sensitivity entails that such a diagram may depend, not only on the formulas involved, but also on the logic with respect to which they are interpreted. These two topics have already been studied extensively in logical geometry, and are thus well-understood by themselves. However, the precise details of their (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Between Square and Hexagon in Oresme’s Livre du Ciel et du Monde.Lorenz Demey - 2019 - History and Philosophy of Logic 41 (1):36-47.
    In logic, Aristotelian diagrams are almost always assumed to be closed under negation, and are thus highly symmetric in nature. In linguistics, by contrast, these diagrams are used to study lexicalization, which is notoriously not closed under negation, thus yielding more asymmetric diagrams. This paper studies the interplay between logical symmetry and linguistic asymmetry in Aristotelian diagrams. I discuss two major symmetric Aristotelian diagrams, viz. the square and the hexagon of opposition, and show how linguistic considerations yield various asymmetric versions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modern Versus Classical Structures of Opposition: A Discussion.Didier Dubois, Henri Prade & Agnès Rico - 2024 - Logica Universalis 18 (1):85-112.
    The aim of this work is to revisit the proposal made by Dag Westerståhl a decade ago when he provided a modern reading of the traditional square of opposition and of related structures. We propose a formalization of this modern view and contrast it with the classical one. We discuss what may be a modern hexagon of opposition and a modern cube, and show their interest in particular for relating quantitative expressions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Using Syllogistics to Teach Metalogic.Lorenz Demey - 2017 - Metaphilosophy 48 (4):575-590.
    This article describes a specific pedagogical context for an advanced logic course and presents a strategy that might facilitate students’ transition from the object-theoretical to the metatheoretical perspective on logic. The pedagogical context consists of philosophy students who in general have had little training in logic, except for a thorough introduction to syllogistics. The teaching strategy tries to exploit this knowledge of syllogistics, by emphasizing the analogies between ideas from metalogic and ideas from syllogistics, such as existential import, the distinction (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Boolean considerations on John Buridan's octagons of opposition.Lorenz Demey - 2018 - History and Philosophy of Logic 40 (2):116-134.
    This paper studies John Buridan's octagons of opposition for the de re modal propositions and the propositions of unusual construction. Both Buridan himself and the secondary literature have emphasized the strong similarities between these two octagons (as well as a third one, for propositions with oblique terms). In this paper, I argue that the interconnection between both octagons is more subtle than has previously been thought: if we move beyond the Aristotelian relations, and also take Boolean considerations into account, then (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Alpha-Structures and Ladders in Logical Geometry.Alexander De Klerck & Lorenz Demey - forthcoming - Studia Logica:1-36.
    Aristotelian diagrams, such as the square of opposition and other, more complex diagrams, have a long history in philosophical logic. Alpha-structures and ladders are two specific kinds of Aristotelian diagrams, which are often studied together because of their close interactions. The present paper builds upon this research line, by reformulating and investigating alpha-structures and ladders in the contemporary setting of logical geometry, a mathematically sophisticated framework for studying Aristotelian diagrams. In particular, this framework allows us to formulate well-defined functions that (...)
    Download  
     
    Export citation  
     
    Bookmark