Switch to: References

Add citations

You must login to add citations.
  1. The Block Relation in Computable Linear Orders.Michael Moses - 2011 - Notre Dame Journal of Formal Logic 52 (3):289-305.
    The block relation B(x,y) in a linear order is satisfied by elements that are finitely far apart; a block is an equivalence class under this relation. We show that every computable linear order with dense condensation-type (i.e., a dense collection of blocks) but no infinite, strongly η-like interval (i.e., with all blocks of size less than some fixed, finite k ) has a computable copy with the nonblock relation ¬ B(x,y) computably enumerable. This implies that every computable linear order has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Undecidable Linear Order That Is $n$-Decidable for All $n$.John Chisholm & Michael Moses - 1998 - Notre Dame Journal of Formal Logic 39 (4):519-526.
    A linear order is -decidable if its universe is and the relations defined by formulas are uniformly computable. This means that there is a computable procedure which, when applied to a formula and a sequence of elements of the linear order, will determine whether or not is true in the structure. A linear order is decidable if the relations defined by all formulas are uniformly computable. These definitions suggest two questions. Are there, for each , -decidable linear orders that are (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Decidable discrete linear orders.M. Moses - 1988 - Journal of Symbolic Logic 53 (2):531-539.
    Three classes of decidable discrete linear orders with varying degrees of effectiveness are investigated. We consider how a classical order type may lie in relation to these three classes, and we characterize by their order types elements of these classes that have effective nontrivial self-embeddings.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Degree spectra of relations on computable structures.Denis R. Hirschfeldt - 2000 - Bulletin of Symbolic Logic 6 (2):197-212.
    There has been increasing interest over the last few decades in the study of the effective content of Mathematics. One field whose effective content has been the subject of a large body of work, dating back at least to the early 1960s, is model theory. Several different notions of effectiveness of model-theoretic structures have been investigated. This communication is concerned withcomputablestructures, that is, structures with computable domains whose constants, functions, and relations are uniformly computable.In model theory, we identify isomorphic structures. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Degree spectra of relations on computable structures in the presence of Δ20 isomorphisms.Denis R. Hirschfeldt - 2002 - Journal of Symbolic Logic 67 (2):697-720.
    We give some new examples of possible degree spectra of invariant relations on Δ 0 2 -categorical computable structures, which demonstrate that such spectra can be fairly complicated. On the other hand, we show that there are nontrivial restrictions on the sets of degrees that can be realized as degree spectra of such relations. In particular, we give a sufficient condition for a relation to have infinite degree spectrum that implies that every invariant computable relation on a Δ 0 2 (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the complexity of the successivity relation in computable linear orderings.Rod Downey, Steffen Lempp & Guohua Wu - 2010 - Journal of Mathematical Logic 10 (1):83-99.
    In this paper, we solve a long-standing open question, about the spectrum of the successivity relation on a computable linear ordering. We show that if a computable linear ordering [Formula: see text] has infinitely many successivities, then the spectrum of the successivity relation is closed upwards in the computably enumerable Turing degrees. To do this, we use a new method of constructing [Formula: see text]-isomorphisms, which has already found other applications such as Downey, Kastermans and Lempp [9] and is of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computability of fraïssé limits.Barbara F. Csima, Valentina S. Harizanov, Russell Miller & Antonio Montalbán - 2011 - Journal of Symbolic Logic 76 (1):66 - 93.
    Fraïssé studied countable structures S through analysis of the age of S i.e., the set of all finitely generated substructures of S. We investigate the effectiveness of his analysis, considering effectively presented lists of finitely generated structures and asking when such a list is the age of a computable structure. We focus particularly on the Fraïssé limit. We also show that degree spectra of relations on a sufficiently nice Fraïssé limit are always upward closed unless the relation is definable by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Degrees of relations on canonically ordered natural numbers and integers.Nikolay Bazhenov, Dariusz Kalociński & Michał Wrocławski - forthcoming - Archive for Mathematical Logic:1-33.
    We investigate the degree spectra of computable relations on canonically ordered natural numbers $$(\omega,<)$$ ( ω, < ) and integers $$(\zeta,<)$$ ( ζ, < ). As for $$(\omega,<)$$ ( ω, < ), we provide several criteria that fix the degree spectrum of a computable relation to all c.e. or to all $$\Delta _2$$ Δ 2 degrees; this includes the complete characterization of the degree spectra of so-called computable block functions that have only finitely many types of blocks. Compared to Bazhenov (...)
    Download  
     
    Export citation  
     
    Bookmark