Switch to: References

Add citations

You must login to add citations.
  1. Reflexive Intermediate First-Order Logics.Nathan C. Carter - 2008 - Notre Dame Journal of Formal Logic 49 (1):75-95.
    It is known that the set of intermediate propositional logics that can prove their own completeness theorems is exactly those which prove every instance of the principle of testability, ¬ϕ ∨ ¬¬ϕ. Such logics are called reflexive. This paper classifies reflexive intermediate logics in the first-order case: a first-order logic is reflexive if and only if it proves every instance of the principle of double negation shift and the metatheory created from it proves every instance of the principle of testability.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Semantic Completeness of First-Order Theories in Constructive Reverse Mathematics.Christian Espíndola - 2016 - Notre Dame Journal of Formal Logic 57 (2):281-286.
    We introduce a general notion of semantic structure for first-order theories, covering a variety of constructions such as Tarski and Kripke semantics, and prove that, over Zermelo–Fraenkel set theory, the completeness of such semantics is equivalent to the Boolean prime ideal theorem. Using a result of McCarty, we conclude that the completeness of Kripke semantics is equivalent, over intuitionistic Zermelo–Fraenkel set theory, to the Law of Excluded Middle plus BPI. Along the way, we also prove the equivalence, over ZF, between (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Satisfiability is False Intuitionistically: A Question from Dana Scott.Charles McCarty - 2020 - Studia Logica 108 (4):803-813.
    Satisfiability or Sat\ is the metatheoretic statementEvery formally intuitionistically consistent set of first-order sentences has a model.The models in question are the Tarskian relational structures familiar from standard first-order model theory, but here treated within intuitionistic metamathematics. We prove that both IZF, intuitionistic Zermelo–Fraenkel set theory, and HAS, second-order Heyting arithmetic, prove Sat\ to be false outright. Following the lead of Carter :75–95, 2008), we then generalize this result to some provably intermediate first-order logics, including the Rose logic. These metatheorems (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Completeness and incompleteness for intuitionistic logic.Charles Mccarty - 2008 - Journal of Symbolic Logic 73 (4):1315-1327.
    We call a logic regular for a semantics when the satisfaction predicate for at least one of its nontheorems is closed under double negation. Such intuitionistic theories as second-order Heyting arithmetic HAS and the intuitionistic set theory IZF prove completeness for no regular logics, no matter how simple or complicated. Any extensions of those theories proving completeness for regular logics are classical, i.e., they derive the tertium non datur. When an intuitionistic metatheory features anticlassical principles or recognizes that a logic (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations