Switch to: References

Add citations

You must login to add citations.
  1. In the shadows of the löwenheim-Skolem theorem: Early combinatorial analyses of mathematical proofs.Jan von Plato - 2007 - Bulletin of Symbolic Logic 13 (2):189-225.
    The Löwenheim-Skolem theorem was published in Skolem's long paper of 1920, with the first section dedicated to the theorem. The second section of the paper contains a proof-theoretical analysis of derivations in lattice theory. The main result, otherwise believed to have been established in the late 1980s, was a polynomial-time decision algorithm for these derivations. Skolem did not develop any notation for the representation of derivations, which makes the proofs of his results hard to follow. Such a formal notation is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The intensional side of algebraic-topological representation theorems.Sara Negri - 2017 - Synthese 198 (Suppl 5):1121-1143.
    Stone representation theorems are a central ingredient in the metatheory of philosophical logics and are used to establish modal embedding results in a general but indirect and non-constructive way. Their use in logical embeddings will be reviewed and it will be shown how they can be circumvented in favour of direct and constructive arguments through the methods of analytic proof theory, and how the intensional part of the representation results can be recovered from the syntactic proof of those embeddings. Analytic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proof analysis in intermediate logics.Roy Dyckhoff & Sara Negri - 2012 - Archive for Mathematical Logic 51 (1):71-92.
    Using labelled formulae, a cut-free sequent calculus for intuitionistic propositional logic is presented, together with an easy cut-admissibility proof; both extend to cover, in a uniform fashion, all intermediate logics characterised by frames satisfying conditions expressible by one or more geometric implications. Each of these logics is embedded by the Gödel–McKinsey–Tarski translation into an extension of S4. Faithfulness of the embedding is proved in a simple and general way by constructive proof-theoretic methods, without appeal to semantics other than in the (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations