Switch to: References

Citations of:

Proof Theory for Modal Logic

Philosophy Compass 6 (8):523-538 (2011)

Add citations

You must login to add citations.
  1. Sequent Calculi for Orthologic with Strict Implication.Tomoaki Kawano - 2022 - Bulletin of the Section of Logic 51 (1):73-89.
    In this study, new sequent calculi for a minimal quantum logic ) are discussed that involve an implication. The sequent calculus \ for \ was established by Nishimura, and it is complete with respect to ortho-models. As \ does not contain implications, this study adopts the strict implication and constructs two new sequent calculi \ and \ as the expansions of \. Both \ and \ are complete with respect to the O-models. In this study, the completeness and decidability theorems (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatic and dual systems for constructive necessity, a formally verified equivalence.Lourdes del Carmen González-Huesca, Favio E. Miranda-Perea & P. Selene Linares-Arévalo - 2019 - Journal of Applied Non-Classical Logics 29 (3):255-287.
    We present a proof of the equivalence between two deductive systems for constructive necessity, namely an axiomatic characterisation inspired by Hakli and Negri's system of derivations from assumptions for modal logic , a Hilbert-style formalism designed to ensure the validity of the deduction theorem, and the judgmental reconstruction given by Pfenning and Davies by means of a natural deduction approach that makes a distinction between valid and true formulae, constructively. Both systems and the proof of their equivalence are formally verified (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On a Generality Condition in Proof‐Theoretic Semantics.Bogdan Dicher - 2017 - Theoria 83 (4):394-418.
    In the recent literature on proof-theoretic semantics, there is mention of a generality condition on defining rules. According to this condition, the schematic formulation of the defining rules must be maximally general, in the sense that no restrictions should be placed on the contexts of these rules. In particular, context variables must always be present in the schematic rules and they should range over arbitrary collections of formulae. I argue against imposing such a condition, by showing that it has undesirable (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Capturing naive validity in the Cut-free approach.Eduardo Barrio, Lucas Rosenblatt & Diego Tajer - 2016 - Synthese 199 (Suppl 3):707-723.
    Rejecting the Cut rule has been proposed as a strategy to avoid both the usual semantic paradoxes and the so-called v-Curry paradox. In this paper we consider if a Cut-free theory is capable of accurately representing its own notion of validity. We claim that the standard rules governing the validity predicate are too weak for this purpose and we show that although it is possible to strengthen these rules, the most obvious way of doing so brings with it a serious (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Tolerance and higher-order vagueness.Peter Pagin - 2017 - Synthese 194 (10):3727-3760.
    The idea of higher-order vagueness is usually associated with conceptions of vagueness that focus on the existence of borderline cases. What sense can be made of it within a conception of vagueness that focuses on tolerance instead? A proposal is offered here. It involves understanding ‘definitely’ not as a sentence operator but as a predicate modifier, and more precisely as an intensifier, that is, an operator that shifts the predicate extension along a scale. This idea is combined with the author’s (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Vagueness: Subvaluationism.Pablo Cobreros - 2013 - Philosophy Compass 8 (5):472-485.
    Supervaluationism is a well known theory of vagueness. Subvaluationism is a less well known theory of vagueness. But these theories cannot be taken apart, for they are in a relation of duality that can be made precise. This paper provides an introduction to the subvaluationist theory of vagueness in connection to its dual, supervaluationism. A survey on the supervaluationist theory can be found in the Compass paper of Keefe (2008); our presentation of the theory in this paper will be short (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • A reduction-based cut-free Gentzen calculus for dynamic epistemic logic1.Martin Wirsing & Alexander Knapp - 2023 - Logic Journal of the IGPL 31 (6):1047-1068.
    Dynamic epistemic logic (DEL) is a multi-modal logic for reasoning about the change of knowledge in multi-agent systems. It extends epistemic logic by a modal operator for actions which announce logical formulas to other agents. In Hilbert-style proof calculi for DEL, modal action formulas are reduced to epistemic logic, whereas current sequent calculi for DEL are labelled systems which internalize the semantic accessibility relation of the modal operators, as well as the accessibility relation underlying the semantics of the actions. We (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Lyndon interpolation theorem of instantial neighborhood logic – constructively via a sequent calculus.Junhua Yu - 2020 - Annals of Pure and Applied Logic 171 (1):102721.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Neighborhood Semantics for Modal Logic.Eric Pacuit - 2017 - Cham, Switzerland: Springer.
    This book offers a state-of-the-art introduction to the basic techniques and results of neighborhood semantics for modal logic. In addition to presenting the relevant technical background, it highlights both the pitfalls and potential uses of neighborhood models – an interesting class of mathematical structures that were originally introduced to provide a semantics for weak systems of modal logic. In addition, the book discusses a broad range of topics, including standard modal logic results ; bisimulations for neighborhood models and other model-theoretic (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Translations Between Gentzen–Prawitz and Jaśkowski–Fitch Natural Deduction Proofs.Shawn Standefer - 2019 - Studia Logica 107 (6):1103-1134.
    Two common forms of natural deduction proof systems are found in the Gentzen–Prawitz and Jaśkowski–Fitch systems. In this paper, I provide translations between proofs in these systems, pointing out the ways in which the translations highlight the structural rules implicit in the systems. These translations work for classical, intuitionistic, and minimal logic. I then provide translations for classical S4 proofs.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Omega-inconsistency without cuts and nonstandard models.Andreas Fjellstad - 2016 - Australasian Journal of Logic 13 (5).
    This paper concerns the relationship between transitivity of entailment, omega-inconsistency and nonstandard models of arithmetic. First, it provides a cut-free sequent calculus for non-transitive logic of truth STT based on Robinson Arithmetic and shows that this logic is omega-inconsistent. It then identifies the conditions in McGee for an omega-inconsistent logic as quantified standard deontic logic, presents a cut-free labelled sequent calculus for quantified standard deontic logic based on Robinson Arithmetic where the deontic modality is treated as a predicate, proves omega-inconsistency (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Proofs and Countermodels in Non-Classical Logics.Sara Negri - 2014 - Logica Universalis 8 (1):25-60.
    Proofs and countermodels are the two sides of completeness proofs, but, in general, failure to find one does not automatically give the other. The limitation is encountered also for decidable non-classical logics in traditional completeness proofs based on Henkin’s method of maximal consistent sets of formulas. A method is presented that makes it possible to establish completeness in a direct way: For any given sequent either a proof in the given logical system or a countermodel in the corresponding frame class (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Another plan for negation.Nissim Francez - 2019 - Australasian Journal of Logic 16 (5):159-176.
    The paper presents a plan for negation, proposing a paradigm shift from the Australian plan for negation, leading to a family of contra-classical logics. The two main ideas are the following: Instead of shifting points of evaluation (in a frame), shift the evaluated formula. Introduce an incompatibility set for every atomic formula, extended to any compound formula, and impose the condition on valuations that a formula evaluates to true iff all the formulas in its incompatibility set evaluate to false. Thus, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The intensional side of algebraic-topological representation theorems.Sara Negri - 2017 - Synthese 198 (Suppl 5):1121-1143.
    Stone representation theorems are a central ingredient in the metatheory of philosophical logics and are used to establish modal embedding results in a general but indirect and non-constructive way. Their use in logical embeddings will be reviewed and it will be shown how they can be circumvented in favour of direct and constructive arguments through the methods of analytic proof theory, and how the intensional part of the representation results can be recovered from the syntactic proof of those embeddings. Analytic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Proof analysis in intermediate logics.Roy Dyckhoff & Sara Negri - 2012 - Archive for Mathematical Logic 51 (1):71-92.
    Using labelled formulae, a cut-free sequent calculus for intuitionistic propositional logic is presented, together with an easy cut-admissibility proof; both extend to cover, in a uniform fashion, all intermediate logics characterised by frames satisfying conditions expressible by one or more geometric implications. Each of these logics is embedded by the Gödel–McKinsey–Tarski translation into an extension of S4. Faithfulness of the embedding is proved in a simple and general way by constructive proof-theoretic methods, without appeal to semantics other than in the (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Expressing logical disagreement from within.Andreas Fjellstad - 2022 - Synthese 200 (2):1-33.
    Against the backdrop of the frequent comparison of theories of truth in the literature on semantic paradoxes with regard to which inferences and metainferences are deemed valid, this paper develops a novel approach to defining a binary predicate for representing the valid inferences and metainferences of a theory within the theory itself under the assumption that the theory is defined with a classical meta-theory. The aim with the approach is to obtain a tool which facilitates the comparison between a theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Natural Deduction Calculus for S4.2.Simone Martini, Andrea Masini & Margherita Zorzi - 2024 - Notre Dame Journal of Formal Logic 65 (2):127-150.
    We propose a natural deduction calculus for the modal logic S4.2. The system is designed to match as much as possible the structure and the properties of the standard system of natural deduction for first-order classical logic, exploiting the formal analogy between modalities and quantifiers. The system is proved sound and complete with respect to (w.r.t.) the standard Hilbert-style formulation of S4.2. Normalization and its consequences are obtained in a natural way, with proofs that closely follow the analogous ones for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cut Elimination for Extended Sequent Calculi.Simone Martini, Andrea Masini & Margherita Zorzi - 2023 - Bulletin of the Section of Logic 52 (4):459-495.
    We present a syntactical cut-elimination proof for an extended sequent calculus covering the classical modal logics in the \(\mathsf{K}\), \(\mathsf{D}\), \(\mathsf{T}\), \(\mathsf{K4}\), \(\mathsf{D4}\) and \(\mathsf{S4}\) spectrum. We design the systems uniformly since they all share the same set of rules. Different logics are obtained by “tuning” a single parameter, namely a constraint on the applicability of the cut rule and on the (left and right, respectively) rules for \(\Box\) and \(\Diamond\). Starting points for this research are 2-sequents and indexed-based calculi (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Recent Advances in Proof Systems for Modal Logic.Sara Negri - 2014 - In Rajeev Goré, Barteld Kooi & Agi Kurucz (eds.), Advances in Modal Logic, Volume 10: Papers From the Tenth Aiml Conference, Held in Groningen, the Netherlands, August 2014. London, England: CSLI Publications. pp. 421-422.
    Download  
     
    Export citation  
     
    Bookmark  
  • The G4i Analogue of a G3i Sequent Calculus.Rosalie Iemhoff - 2022 - Studia Logica 110 (6):1493-1506.
    This paper provides a method to obtain terminating analytic calculi for a large class of intuitionistic modal logics. For a given logic L with a cut-free calculus G that is an extension of G3ip the method produces a terminating analytic calculus that is an extension of G4ip and equivalent to G. G4ip was introduced by Roy Dyckhoff in 1992 as a terminating analogue of the calculus G3ip for intuitionistic propositional logic. Thus this paper can be viewed as an extension of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A cut-free sequent calculus for the logic od subset spaces.Birgit Elbl - 2016 - In Lev Beklemishev, Stéphane Demri & András Máté (eds.), Advances in Modal Logic, Volume 11. CSLI Publications. pp. 268-287.
    Download  
     
    Export citation  
     
    Bookmark