Switch to: References

Add citations

You must login to add citations.
  1. Proof Theory for Modal Logic.Sara Negri - 2011 - Philosophy Compass 6 (8):523-538.
    The axiomatic presentation of modal systems and the standard formulations of natural deduction and sequent calculus for modal logic are reviewed, together with the difficulties that emerge with these approaches. Generalizations of standard proof systems are then presented. These include, among others, display calculi, hypersequents, and labelled systems, with the latter surveyed from a closer perspective.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Intuitionistic mereology.Paolo Maffezioli & Achille C. Varzi - 2021 - Synthese 198 (Suppl 18):4277-4302.
    Two mereological theories are presented based on a primitive apartness relation along with binary relations of mereological excess and weak excess, respectively. It is shown that both theories are acceptable from the standpoint of constructive reasoning while remaining faithful to the spirit of classical mereology. The two theories are then compared and assessed with regard to their extensional import.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Intuitionistic Mereology II: Overlap and Disjointness.Paolo Maffezioli & Achille C. Varzi - 2023 - Journal of Philosophical Logic 52 (4):1197-1233.
    This paper extends the axiomatic treatment of intuitionistic mereology introduced in Maffezioli and Varzi (_Synthese, 198_(S18), 4277–4302 2021 ) by examining the behavior of constructive notions of overlap and disjointness. We consider both (i) various ways of defining such notions in terms of other intuitionistic mereological primitives, and (ii) the possibility of treating them as mereological primitives of their own.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Necessity of Thought.Cesare Cozzo - 2014 - In Heinrich Wansing (ed.), Dag Prawitz on Proofs and Meaning. Cham, Switzerland: Springer. pp. 101-20.
    The concept of “necessity of thought” plays a central role in Dag Prawitz’s essay “Logical Consequence from a Constructivist Point of View” (Prawitz 2005). The theme is later developed in various articles devoted to the notion of valid inference (Prawitz, 2009, forthcoming a, forthcoming b). In section 1 I explain how the notion of necessity of thought emerges from Prawitz’s analysis of logical consequence. I try to expound Prawitz’s views concerning the necessity of thought in sections 2, 3 and 4. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Interpolation in Extensions of First-Order Logic.Guido Gherardi, Paolo Maffezioli & Eugenio Orlandelli - 2020 - Studia Logica 108 (3):619-648.
    We prove a generalization of Maehara’s lemma to show that the extensions of classical and intuitionistic first-order logic with a special type of geometric axioms, called singular geometric axioms, have Craig’s interpolation property. As a corollary, we obtain a direct proof of interpolation for (classical and intuitionistic) first-order logic with identity, as well as interpolation for several mathematical theories, including the theory of equivalence relations, (strict) partial and linear orders, and various intuitionistic order theories such as apartness and positive partial (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Constructive completions of ordered sets, groups and fields.Erik Palmgren - 2005 - Annals of Pure and Applied Logic 135 (1-3):243-262.
    In constructive mathematics it is of interest to consider a more general, but classically equivalent, notion of linear order, a so-called pseudo-order. The prime example is the order of the constructive real numbers. We examine two kinds of constructive completions of pseudo-orders: order completions of pseudo-orders and Cauchy completions of ordered groups and fields. It is shown how these can be predicatively defined in type theory, also when the underlying set is non-discrete. Provable choice principles, in particular a generalisation of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Dag Prawitz on Proofs and Meaning.Heinrich Wansing (ed.) - 2014 - Cham, Switzerland: Springer.
    This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Admissibility of structural rules for contraction-free systems of intuitionistic logic.Roy Dyckhoff & Sara Negri - 2000 - Journal of Symbolic Logic 65 (4):1499-1518.
    We give a direct proof of admissibility of cut and contraction for the contraction-free sequent calculus G4ip for intuitionistic propositional logic and for a corresponding multi-succedent calculus: this proof extends easily in the presence of quantifiers, in contrast to other, indirect, proofs. i.e., those which use induction on sequent weight or appeal to admissibility of rules in other calculi.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The eskolemization of universal quantifiers.Rosalie Iemhoff - 2010 - Annals of Pure and Applied Logic 162 (3):201-212.
    This paper is a sequel to the papers Baaz and Iemhoff [4] and [6] in which an alternative skolemization method called eskolemization was introduced that, when restricted to strong existential quantifiers, is sound and complete for constructive theories. In this paper we extend the method to universal quantifiers and show that for theories satisfying the witness property it is sound and complete for all formulas. We obtain a Herbrand theorem from this, and apply the method to the intuitionistic theory of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation