Switch to: References

Add citations

You must login to add citations.
  1. Drawing conclusions: Representing and evaluating competing explanations.Alice Liefgreen & David A. Lagnado - 2023 - Cognition 234 (C):105382.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Measuring coherence with Bayesian networks.Alicja Kowalewska & Rafal Urbaniak - 2023 - Artificial Intelligence and Law 31 (2):369-395.
    When we talk about the coherence of a story, we seem to think of how well its individual pieces fit together—how to explicate this notion formally, though? We develop a Bayesian network based coherence measure with implementation in _R_, which performs better than its purely probabilistic predecessors. The novelty is that by paying attention to the network structure, we avoid simply taking mean confirmation scores between all possible pairs of subsets of a narration. Moreover, we assign special importance to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Bayesian model of legal syllogistic reasoning.Axel Constant - 2024 - Artificial Intelligence and Law 32 (2):441-462.
    Bayesian approaches to legal reasoning propose causal models of the relation between evidence, the credibility of evidence, and ultimate hypotheses, or verdicts. They assume that legal reasoning is the process whereby one infers the posterior probability of a verdict based on observed evidence, or facts. In practice, legal reasoning does not operate quite that way. Legal reasoning is also an attempt at inferring applicable rules derived from legal precedents or statutes based on the facts at hand. To make such an (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Limits of Bayesian Thinking in Court.Ronald Meester - 2020 - Topics in Cognitive Science 12 (4):1205-1212.
    We comment on the contributions of Dahlman and of Fenton et al., who both suggested a Bayesian approach to analyze the Simonshaven case. We argue that analyzing a full case with a Bayesian approach is not feasible, and that there are serious problems with assigning actual numbers to probabilities and priors. We also discuss the nature of Bayesian thinking in court, and the nature and interpretation of the likelihood ratio. In particular, we discuss what it could mean that a likelihood (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Analyzing the Simonshaven Case Using Bayesian Networks.Norman Fenton, Martin Neil, Barbaros Yet & David Lagnado - 2020 - Topics in Cognitive Science 12 (4):1092-1114.
    Fenton et al. present a Bayesian‐network analysis of the case, using their previously developed set of building blocks (‘idioms’). They claim that these idioms, combined with their opportunity‐based method for estimating the prior probability of guilt, reduce the subjectivity of their analysis. Although their Bayesian model is less cognitively feasible than scenario‐ or argumentation‐based models, they claim that it does model the standard approach to legal proof, which is to continually revise beliefs under new evidence.
    Download  
     
    Export citation  
     
    Bookmark   3 citations