Switch to: References

Add citations

You must login to add citations.
  1. Cut elimination and strong separation for substructural logics: an algebraic approach.Nikolaos Galatos & Hiroakira Ono - 2010 - Annals of Pure and Applied Logic 161 (9):1097-1133.
    We develop a general algebraic and proof-theoretic study of substructural logics that may lack associativity, along with other structural rules. Our study extends existing work on substructural logics over the full Lambek Calculus [34], Galatos and Ono [18], Galatos et al. [17]). We present a Gentzen-style sequent system that lacks the structural rules of contraction, weakening, exchange and associativity, and can be considered a non-associative formulation of . Moreover, we introduce an equivalent Hilbert-style system and show that the logic associated (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Structural and universal completeness in algebra and logic.Paolo Aglianò & Sara Ugolini - 2024 - Annals of Pure and Applied Logic 175 (3):103391.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Postponement of $$mathsf {}$$ and Glivenko’s Theorem, Revisited.Giulio Guerrieri & Alberto Naibo - 2019 - Studia Logica 107 (1):109-144.
    We study how to postpone the application of the reductio ad absurdum rule ) in classical natural deduction. This technique is connected with two normalization strategies for classical logic, due to Prawitz and Seldin, respectively. We introduce a variant of Seldin’s strategy for the postponement of \, which induces a negative translation from classical to intuitionistic and minimal logic. Through this translation, Glivenko’s theorem from classical to intuitionistic and minimal logic is proven.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Postponement of Reduction ad Absurdum and Glivenko’s Theorem, Revisited.Giulio Guerrieri & Alberto Naibo - 2019 - Studia Logica 107 (1):109-144.
    We study how to postpone the application of the reductio ad absurdum rule (RAA) in classical natural deduction. This technique is connected with two normalization strategies for classical logic, due to Prawitz and Seldin, respectively. We introduce a variant of Seldin’s strategy for the postponement of RAA, which induces a negative translation from classical to intuitionistic and minimal logic. Through this translation, Glivenko’s theorem from classical to intuitionistic and minimal logic is proven.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Double Negation Semantics for Generalisations of Heyting Algebras.Rob Arthan & Paulo Oliva - 2020 - Studia Logica 109 (2):341-365.
    This paper presents an algebraic framework for investigating proposed translations of classical logic into intuitionistic logic, such as the four negative translations introduced by Kolmogorov, Gödel, Gentzen and Glivenko. We view these asvariant semanticsand present a semantic formulation of Troelstra’s syntactic criteria for a satisfactory negative translation. We consider how each of the above-mentioned translation schemes behaves on two generalisations of Heyting algebras: bounded pocrims and bounded hoops. When a translation fails for a particular class of algebras, we demonstrate that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algebraic Kripke-Style Semantics for Relevance Logics.Eunsuk Yang - 2014 - Journal of Philosophical Logic 43 (4):803-826.
    This paper deals with one kind of Kripke-style semantics, which we shall call algebraic Kripke-style semantics, for relevance logics. We first recall the logic R of relevant implication and some closely related systems, their corresponding algebraic structures, and algebraic completeness results. We provide simpler algebraic completeness proofs. We then introduce various types of algebraic Kripke-style semantics for these systems and connect them with algebraic semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Approach to Glivenko’s Theorem in Algebraizable Logics.Antoni Torrens - 2008 - Studia Logica 88 (3):349-383.
    In a classical paper [15] V. Glivenko showed that a proposition is classically demonstrable if and only if its double negation is intuitionistically demonstrable. This result has an algebraic formulation: the double negation is a homomorphism from each Heyting algebra onto the Boolean algebra of its regular elements. Versions of both the logical and algebraic formulations of Glivenko’s theorem, adapted to other systems of logics and to algebras not necessarily related to logic can be found in the literature (see [2, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Glivenko theorems revisited.Hiroakira Ono - 2010 - Annals of Pure and Applied Logic 161 (2):246-250.
    Glivenko-type theorems for substructural logics are comprehensively studied in the paper [N. Galatos, H. Ono, Glivenko theorems for substructural logics over FL, Journal of Symbolic Logic 71 1353–1384]. Arguments used there are fully algebraic, and based on the fact that all substructural logics are algebraizable 279–308] and also [N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, in: Studies in Logic and the Foundations of Mathematics, vol. 151, Elsevier, 2007] for the details). As (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Jacobson Radical of a Propositional Theory.Giulio Fellin, Peter Schuster & Daniel Wessel - 2022 - Bulletin of Symbolic Logic 28 (2):163-181.
    Alongside the analogy between maximal ideals and complete theories, the Jacobson radical carries over from ideals of commutative rings to theories of propositional calculi. This prompts a variant of Lindenbaum’s Lemma that relates classical validity and intuitionistic provability, and the syntactical counterpart of which is Glivenko’s Theorem. The Jacobson radical in fact turns out to coincide with the classical deductive closure. As a by-product we obtain a possible interpretation in logic of the axioms-as-rules conservation criterion for a multi-conclusion Scott-style entailment (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Proof-Theoretic Approach to Negative Translations in Intuitionistic Tense Logics.Zhe Lin & Minghui Ma - 2022 - Studia Logica 110 (5):1255-1289.
    A cut-free Gentzen sequent calculus for Ewald’s intuitionistic tense logic \ is established. By the proof-theoretic method, we prove that, for every set of strictly positive implications S, the classical tense logic \ is embedded into its intuitionistic analogue \ via Kolmogorov, Gödel–Genzten and Kuroda translations respectively. A sufficient and necessary condition for Glivenko type theorem in tense logics is established.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • L-algebras and three main non-classical logics.Wolfgang Rump - 2022 - Annals of Pure and Applied Logic 173 (7):103121.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Integrally Closed Residuated Lattices.José Gil-Férez, Frederik Möllerström Lauridsen & George Metcalfe - 2020 - Studia Logica 108 (5):1063-1086.
    A residuated lattice is said to be integrally closed if it satisfies the quasiequations \ and \, or equivalently, the equations \ and \. Every integral, cancellative, or divisible residuated lattice is integrally closed, and, conversely, every bounded integrally closed residuated lattice is integral. It is proved that the mapping \\backslash {\mathrm {e}}\) on any integrally closed residuated lattice is a homomorphism onto a lattice-ordered group. A Glivenko-style property is then established for varieties of integrally closed residuated lattices with respect (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fibred algebraic semantics for a variety of non-classical first-order logics and topological logical translation.Yoshihiro Maruyama - 2021 - Journal of Symbolic Logic 86 (3):1189-1213.
    Lawvere hyperdoctrines give categorical algebraic semantics for intuitionistic predicate logic. Here we extend the hyperdoctrinal semantics to a broad variety of substructural predicate logics over the Typed Full Lambek Calculus, verifying their completeness with respect to the extended hyperdoctrinal semantics. This yields uniform hyperdoctrinal completeness results for numerous logics such as different types of relevant predicate logics and beyond, which are new results on their own; i.e., we give uniform categorical semantics for a broad variety of non-classical predicate logics. And (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Glivenko theorems and negative translations in substructural predicate logics.Hadi Farahani & Hiroakira Ono - 2012 - Archive for Mathematical Logic 51 (7-8):695-707.
    Along the same line as that in Ono (Ann Pure Appl Logic 161:246–250, 2009), a proof-theoretic approach to Glivenko theorems is developed here for substructural predicate logics relative not only to classical predicate logic but also to arbitrary involutive substructural predicate logics over intuitionistic linear predicate logic without exponentials QFLe. It is shown that there exists the weakest logic over QFLe among substructural predicate logics for which the Glivenko theorem holds. Negative translations of substructural predicate logics are studied by using (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations