Switch to: References

Add citations

You must login to add citations.
  1. Stability and Hopf bifurcation analysis of novel hyperchaotic system with delayed feedback control.Mani Prakash & Pagavathigounder Balasubramaniam - 2016 - Complexity 21 (6):180-193.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Chaos synchronization of a fractional-order modified Van der Pol-Duffing system via new linear control, backstepping control and Takagi-Sugeno fuzzy approaches.Ahmed Ezzat Matouk - 2016 - Complexity 21 (S1):116-124.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Finite-time stabilization of complex dynamical networks via optimal control.Guofeng Mei, Xiaoqun Wu & Jun-An di NingLu - 2016 - Complexity 21 (S1):417-425.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Further results on the impulsive synchronization of uncertain complex-variable chaotic delayed systems.Song Zheng - 2016 - Complexity 21 (5):131-142.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Synchronization analysis of complex-Variable chaotic systems with discontinuous unidirectional coupling.Song Zheng - 2016 - Complexity 21 (6):343-355.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Chaos control of uncertain time-delay chaotic systems with input dead-zone nonlinearity.Ming-Chang Pai - 2016 - Complexity 21 (3):13-20.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Master-slave synchronization criteria for chaotic hindmarsh-rose neurons using linear feedback control.Ke Ding & Qing-Long Han - 2016 - Complexity 21 (5):319-327.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Stabilization and Synchronization of Uncertain Zhang System by Means of Robust Adaptive Control.J. Humberto Pérez-Cruz - 2018 - Complexity 2018:1-19.
    Standard adaptive control is the preferred approach for stabilization and synchronization of chaotic systems when the structure of such systems is a priori known but the parameters are unknown. However, in the presence of unmodeled dynamics and/or disturbance, this approach is not effective anymore due to the drift of the parameter estimations, which eventually causes the instability of the closed-loop system. In this paper, a robustifying term, which consists of a saturation function, is used to avoid this problem. The robustifying (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mutual synchronization behavior for chaotic systems via limited capacity communication channels.Xingyuan da LinWang, Fuchen Zhang & Yi Yao - 2016 - Complexity 21 (6):335-342.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Adaptive-impulsive function projective synchronization for a class of time-delay chaotic systems.Song Zheng - 2016 - Complexity 21 (2):333-341.
    Download  
     
    Export citation  
     
    Bookmark   1 citation