Switch to: References

Citations of:

General covariance, gauge theories and the kretschmann objection

In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. New York: Cambridge University Press. pp. 110--123 (2002)

Add citations

You must login to add citations.
  1. (1 other version)What is the Point of Reduction in Science?Karen Crowther - 2020 - Erkenntnis 85 (6):1437-1460.
    The numerous and diverse roles of theory reduction in science have been insufficiently explored in the philosophy literature on reduction. Part of the reason for this has been a lack of attention paid to reduction2 (successional reduction)—although I here argue that this sense of reduction is closer to reduction1 (explanatory reduction) than is commonly recognised, and I use an account of reduction that is neutral between the two. This paper draws attention to the utility—and incredible versatility—of theory reduction. A non-exhaustive (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)What is the point of reduction in science?Karen Crowther - 2018 - Erkenntnis:1-24.
    The numerous and diverse roles of theory reduction in science have been insufficiently explored in the philosophy literature on reduction. Part of the reason for this has been a lack of attention paid to reduction2 (successional reduction)---although I here argue that this sense of reduction is closer to reduction1 (explanatory reduction) than is commonly recognised, and I use an account of reduction that is neutral between the two. This paper draws attention to the utility---and incredible versatility---of theory reduction. A non-exhaustive (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Defining a crisis: the roles of principles in the search for a theory of quantum gravity.Karen Crowther - 2021 - Synthese 198 (Suppl 14):3489-3516.
    In times of crisis, when current theories are revealed as inadequate to task, and new physics is thought to be required—physics turns to re-evaluate its principles, and to seek new ones. This paper explores the various types, and roles of principles that feature in the problem of quantum gravity as a current crisis in physics. I illustrate the diversity of the principles being appealed to, and show that principles serve in a variety of roles in all stages of the crisis, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Erich Kretschmann as a proto-logical-empiricist: Adventures and misadventures of the point-coincidence argument.Marco Giovanelli - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (2):115-134.
    The present paper attempts to show that a 1915 article by Erich Kretschmann must be credited not only for being the source of Einstein’s point-coincidence remark, but also for having anticipated the main lines of the logical-empiricist interpretation of general relativity. Whereas Kretschmann was inspired by the work of Mach and Poincaré, Einstein inserted Kretschmann’s point-coincidence parlance into the context of Ricci and Levi-Civita’s absolute differential calculus. Kretschmann himself realized this and turned the point-coincidence argument against Einstein in his second (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Leibniz Equivalence. On Leibniz's Influence on the Logical Empiricist Interpretation of General Relativity.Marco Giovanelli - unknown
    Einstein’s “point-coincidence argument'” as a response to the “hole argument” is usually considered as an expression of “Leibniz equivalence,” a restatement of indiscernibility in the sense of Leibniz. Through a historical-critical analysis of Logical Empiricists' interpretation of General Relativity, the paper attempts to show that this labeling is misleading. Logical Empiricists tried explicitly to understand the point-coincidence argument as an indiscernibility argument of the Leibnizian kind, such as those formulated in the 19th century debate about geometry, by authors such as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Einstein's Hole Argument and its Legacy.Hanns Hagen Goetzke - unknown
    In 1915 not being able to find field equations for a generally covariant theory of gravitation Einstein came up with a fundamental argument against general covariance – the hole argument. This essay discusses the hole argument and focusses on its consequences for substantivalism and determinism. Two different definitions of determinism are introduced and their compatibility with general covariance from a substantivalist's point of view is discussed.
    Download  
     
    Export citation  
     
    Bookmark  
  • The constitutive a priori and the distinction between mathematical and physical possibility.Jonathan Everett - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):139-152.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The relevance of irrelevance: Absolute objects and the Jones-Geroch dust velocity counterexample, with a note on spinors.J. Brian Pitts - unknown
    James L. Anderson analyzed the conceptual novelty of Einstein's theory of gravity as its lack of ``absolute objects.'' Michael Friedman's related concept of absolute objects has been criticized by Roger Jones and Robert Geroch for implausibly admitting as absolute the timelike 4-velocity field of dust in cosmological models in Einstein's theory. Using Nathan Rosen's action principle, I complete Anna Maidens's argument that the Jones-Geroch problem is not solved by requiring that absolute objects not be varied. Recalling Anderson's proscription of (globally) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Symmetries in Physics: Philosophical Reflections.Katherine Brading & Elena Castellani (eds.) - 2002 - New York: Cambridge University Press.
    Highlighting main issues and controversies, this book brings together current philosophical discussions of symmetry in physics to provide an introduction to the subject for physicists and philosophers. The contributors cover all the fundamental symmetries of modern physics, such as CPT and permutation symmetry, as well as discussing symmetry-breaking and general interpretational issues. Classic texts are followed by new review articles and shorter commentaries for each topic. Suitable for courses on the foundations of physics, philosophy of physics and philosophy of science, (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Gauge Symmetries, Symmetry Breaking, and Gauge-Invariant Approaches.Philipp Berghofer, Jordan François, Simon Friederich, Henrique Gomes, Guy Hetzroni, Axel Maas & René Sondenheimer - 2023 - Cambridge University Press.
    Gauge symmetries play a central role, both in the mathematical foundations as well as the conceptual construction of modern (particle) physics theories. However, it is yet unclear whether they form a necessary component of theories, or whether they can be eliminated. It is also unclear whether they are merely an auxiliary tool to simplify (and possibly localize) calculations or whether they contain independent information. Therefore their status, both in physics and philosophy of physics, remains to be fully clarified. In this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Does General Relativity Highlight Necessary Connections in Nature?Antonio Vassallo - 2021 - Synthese 199 (1-2):1-23.
    The dynamics of general relativity is encoded in a set of ten differential equations, the so-called Einstein field equations. It is usually believed that Einstein's equations represent a physical law describing the coupling of spacetime with material fields. However, just six of these equations actually describe the coupling mechanism: the remaining four represent a set of differential relations known as Bianchi identities. The paper discusses the physical role that the Bianchi identities play in general relativity, and investigates whether these identities (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interpreting Heisenberg interpreting quantum states.Simon Friederich - 2012 - Philosophia Naturalis 50 (1):85-114.
    The paper investigates possible readings of the later Heisenberg's remarks on the nature of quantum states. It discusses, in particular, whether Heisenberg should be seen as a proponent of the epistemic conception of states – the view that quantum states are not descriptions of quantum systems but rather reflect the state assigning observers' epistemic relations to these systems. On the one hand, it seems plausible that Heisenberg subscribes to that view, given how he defends the notorious "collapse of the wave (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The nontriviality of trivial general covariance: How electrons restrict 'time' coordinates, spinors (almost) fit into tensor calculus, and of a tetrad is surplus structure.J. Brian Pitts - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):1-24.
    It is a commonplace in the philosophy of physics that any local physical theory can be represented using arbitrary coordinates, simply by using tensor calculus. On the other hand, the physics literature often claims that spinors \emph{as such} cannot be represented in coordinates in a curved space-time. These commonplaces are inconsistent. What general covariance means for theories with fermions, such as electrons, is thus unclear. In fact both commonplaces are wrong. Though it is not widely known, Ogievetsky and Polubarinov constructed (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Empirical equivalence, artificial gauge freedom and a generalized kretschmann objection.J. Brian Pitts - unknown
    Einstein considered general covariance to characterize the novelty of his General Theory of Relativity (GTR), but Kretschmann thought it merely a formal feature that any theory could have. The claim that GTR is ``already parametrized'' suggests analyzing substantive general covariance as formal general covariance achieved without hiding preferred coordinates as scalar ``clock fields,'' much as Einstein construed general covariance as the lack of preferred coordinates. Physicists often install gauge symmetries artificially with additional fields, as in the transition from Proca's to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Symmetries and invariances in classical physics.Katherine Brading & Elena Castellani - unknown - In Jeremy Butterfield & John Earman (eds.). Elsevier.
    Symmetry, intended as invariance with respect to a transformation (more precisely, with respect to a transformation group), has acquired more and more importance in modern physics. This Chapter explores in 8 Sections the meaning, application and interpretation of symmetry in classical physics. This is done both in general, and with attention to specific topics. The general topics include illustration of the distinctions between symmetries of objects and of laws, and between symmetry principles and symmetry arguments (such as Curie's principle), and (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The Forgotten Tradition: How the Logical Empiricists Missed the Philosophical Significance of the Work of Riemann, Christoffel and Ricci.Marco Giovanelli - 2013 - Erkenntnis 78 (6):1219-1257.
    This paper attempts to show how the logical empiricists’ interpretation of the relation between geometry and reality emerges from a “collision” of mathematical traditions. Considering Riemann’s work as the initiator of a 19th century geometrical tradition, whose main protagonists were Helmholtz and Poincaré, the logical empiricists neglected the fact that Riemann’s revolutionary insight flourished instead in a non-geometrical tradition dominated by the works of Christoffel and Ricci-Curbastro roughly in the same years. I will argue that, in the attempt to interpret (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Geometric foundations of classical yang–mills theory.Gabriel Catren - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (3):511-531.
    We analyze the geometric foundations of classical Yang-Mills theory by studying the relationships between internal relativity, locality, global/local invariance, and background independence. We argue that internal relativity and background independence are the two independent defining principles of Yang-Mills theory. We show that local gauge invariance -heuristically implemented by means of the gauge argument- is a direct consequence of internal relativity. Finally, we analyze the conceptual meaning of BRST symmetry in terms of the invariance of the gauge fixed theory under general (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Time and Structure in Canonical Gravity.Dean Rickles - 2006 - In Dean Rickles, Steven French & Juha T. Saatsi (eds.), The Structural Foundations of Quantum Gravity. Oxford, GB: Oxford University Press.
    In this paper I wish to make some headway on understanding what \emph{kind} of problem the ``problem of time'' is, and offer a possible resolution---or, rather, a new way of understanding an old resolution. The response I give is a variation on a theme of Rovelli's \emph{evolving constants of motion} strategy. I argue that by giving correlation strategies a \emph{structuralist} basis, a number of objections to the standard account can be blunted. Moreover, I show that the account I offer provides (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Absolute objects and counterexamples: Jones--Geroch dust, Torretti constant curvature, tetrad-spinor, and scalar density.J. Brian Pitts - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37:347-71.
    James L. Anderson analyzed the novelty of Einstein's theory of gravity as its lack of "absolute objects." Michael Friedman's related work has been criticized by Roger Jones and Robert Geroch for implausibly admitting as absolute the timelike 4-velocity field of dust in cosmological models in Einstein's theory. Using the Rosen-Sorkin Lagrange multiplier trick, I complete Anna Maidens's argument that the problem is not solved by prohibiting variation of absolute objects in an action principle. Recalling Anderson's proscription of "irrelevant" variables, I (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Absolute objects and counterexamples: Jones–Geroch dust, Torretti constant curvature, tetrad-spinor, and scalar density.J. Brian Pitts - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (2):347-371.
    James L. Anderson analyzed the novelty of Einstein's theory of gravity as its lack of "absolute objects." Michael Friedman's related work has been criticized by Roger Jones and Robert Geroch for implausibly admitting as absolute the timelike 4-velocity field of dust in cosmological models in Einstein's theory. Using the Rosen-Sorkin Lagrange multiplier trick, I complete Anna Maidens's argument that the problem is not solved by prohibiting variation of absolute objects in an action principle. Recalling Anderson's proscription of "irrelevant" variables, I (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Einstein and the Representation of Reality.Friedel Weinert - 2006 - Facta Philosophica 8 (1-2):229-252.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ephemeral Point-Events: Is There a Last Remnant of Physical Objectivity?Michele Vallisneri & Massimo Pauri - 2002 - Diálogos. Revista de Filosofía de la Universidad de Puerto Rico 37 (79):263-304.
    For the past two decades, Einstein's Hole Argument (which deals with the apparent indeterminateness of general relativity due to the general covariance of the field equations) and its resolution in terms of "Leibniz equivalence" (the statement that pseudo-Riemannian geometries related by active diffeomorphisms represent the same physical solution) have been the starting point for a lively philosophical debate on the objectivity of the point-events of space-time. It seems that Leibniz equivalence makes it impossible to consider the points of the space-time (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Anderson-Friedman absolute objects program: Several successes, one difficulty.J. Brian Pitts - unknown
    The Anderson-Friedman absolute objects project is reviewed. The Jones-Geroch dust 4-velocity counterexample is resolved by eliminating irrelevant structure. Torretti's example involving constant curvature spaces is shown to have an absolute object on Anderson's analysis. The previously neglected threat of an absolute object from an orthonormal tetrad used for coupling spinors to gravity appears resolvable by eliminating irrelevant fields and using a modified spinor formalism. However, given Anderson's definition, GTR itself has an absolute object (as Robert Geroch has observed recently): a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Absolute objects, counterexamples and general covariance.J. Brian Pitts - unknown
    The Anderson-Friedman absolute objects program has been a favorite analysis of the substantive general covariance that supposedly characterizes Einstein's General Theory of Relativity (GTR). Absolute objects are the same locally in all models (modulo gauge freedom). Substantive general covariance is the lack of absolute objects. Several counterexamples have been proposed, however, including the Jones-Geroch dust and Torretti constant curvature spaces counterexamples. The Jones-Geroch dust case, ostensibly a false positive, is resolved by noting that holes in the dust in some models (...)
    Download  
     
    Export citation  
     
    Bookmark