Switch to: References

Citations of:

Population genetics

Stanford Encyclopedia of Philosophy (web)

Add citations

You must login to add citations.
  1. Four Pillars of Statisticalism.Denis M. Walsh, André Ariew & Mohan Matthen - 2017 - Philosophy, Theory, and Practice in Biology 9 (1):1-18.
    Over the past fifteen years there has been a considerable amount of debate concerning what theoretical population dynamic models tell us about the nature of natural selection and drift. On the causal interpretation, these models describe the causes of population change. On the statistical interpretation, the models of population dynamics models specify statistical parameters that explain, predict, and quantify changes in population structure, without identifying the causes of those changes. Selection and drift are part of a statistical description of population (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • The Structure of Scientific Theories.Rasmus Grønfeldt Winther - 2015 - Stanford Encyclopedia of Philosophy.
    Scientific inquiry has led to immense explanatory and technological successes, partly as a result of the pervasiveness of scientific theories. Relativity theory, evolutionary theory, and plate tectonics were, and continue to be, wildly successful families of theories within physics, biology, and geology. Other powerful theory clusters inhabit comparatively recent disciplines such as cognitive science, climate science, molecular biology, microeconomics, and Geographic Information Science (GIS). Effective scientific theories magnify understanding, help supply legitimate explanations, and assist in formulating predictions. Moving from their (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Gouldian arguments and the sources of contingency.Alison K. McConwell & Adrian Currie - 2017 - Biology and Philosophy 32 (2):243-261.
    ‘Gouldian arguments’ appeal to the contingency of a scientific domain to establish that domain’s autonomy from some body of theory. For instance, pointing to evolutionary contingency, Stephen Jay Gould suggested that natural selection alone is insufficient to explain life on the macroevolutionary scale. In analysing contingency, philosophers have provided source-independent accounts, understanding how events and processes structure history without attending to the nature of those events and processes. But Gouldian Arguments require source-dependent notions of contingency. An account of contingency is (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Exploring the Status of Population Genetics: The Role of Ecology.Roberta L. Millstein - 2013 - Biological Theory 7 (4):346-357.
    The status of population genetics has become hotly debated among biologists and philosophers of biology. Many seem to view population genetics as relatively unchanged since the Modern Synthesis and have argued that subjects such as development were left out of the Synthesis. Some have called for an extended evolutionary synthesis or for recognizing the insignificance of population genetics. Yet others such as Michael Lynch have defended population genetics, declaring "nothing in evolution makes sense except in the light of population genetics" (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Origins and Development of the Idea of Organism-Environment Interaction.Trevor Pearce - 2014 - In Gillian Barker, Eric Desjardins & Trevor Pearce (eds.), Entangled Life: Organism and Environment in the Biological and Social Sciences. Dordrecht: Springer.
    The idea of organism-environment interaction, at least in its modern form, dates only to the mid-nineteenth century. After sketching the origins of the organism-environment dichotomy in the work of Auguste Comte and Herbert Spencer, I will chart its metaphysical and methodological influence on later scientists and philosophers such as Conwy Lloyd Morgan and John Dewey. In biology and psychology, the environment was seen as a causal agent, highlighting questions of organismic variation and plasticity. In philosophy, organism-environment interaction provided a new (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On mechanistic reasoning in unexpected places: the case of population genetics.Lucas J. Matthews - 2017 - Biology and Philosophy 32 (6):999-1018.
    A strong case has been made for the role and value of mechanistic reasoning in process-oriented sciences, such as molecular biology and neuroscience. This paper shifts focus to assess the role of mechanistic reasoning in an area where it is neither obvious nor expected: population genetics. Population geneticists abstract away from the causal-mechanical details of individual organisms and, instead, use mathematics to describe population-level, statistical phenomena. This paper, first, develops a framework for the identification of mechanistic reasoning where it is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Entangled Life: Organism and Environment in the Biological and Social Sciences.Gillian Barker, Eric Desjardins & Trevor Pearce (eds.) - 2014 - Dordrecht: Springer.
    Despite the burgeoning interest in new and more complex accounts of the organism-environment dyad by biologists and philosophers, little attention has been paid in the resulting discussions to the history of these ideas and to their deployment in disciplines outside biology—especially in the social sciences. Even in biology and philosophy, there is a lack of detailed conceptual models of the organism-environment relationship. This volume is designed to fill these lacunae by providing the first multidisciplinary discussion of the topic of organism-environment (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Complex Nexus of Evolutionary Fitness.Mauricio Suárez - 2022 - European Journal for Philosophy of Science 12 (1):1-26.
    The propensity nature of evolutionary fitness has long been appreciated and is nowadays amply discussed. The discussion has, however, on occasion followed long standing conflations in the philosophy of probability literature between propensities, probabilities, and frequencies. In this paper, I apply a more recent conception of propensities in modelling practice to some of the key issues, regarding the mathematical representation of fitness and how it may be regarded as explanatory. The ensuing complex nexus of fitness emphasises the distinction between biological (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An empirical survey on biobanking of human genetic material and data in six EU countries.Isabelle Hirtzlin, Christine Dubreuil, Nathalie Préaubert, Jenny Duchier, Brigitte Jansen, Jürgen Simon, Paula Lobatao De Faria, Anna Perez-Lezaun, Bert Visser, Garrath D. Williams, Anne Cambon-Thomsen & The Eurogenbank Consortium - 2003 - European Journal of Human Genetics 11:475–488.
    Biobanks correspond to different situations: research and technological development, medical diagnosis or therapeutic activities. Their status is not clearly defined. We aimed to investigate human biobanking in Europe, particularly in relation to organisational, economic and ethical issues in various national contexts. Data from a survey in six EU countries were collected as part of a European Research Project examining human and non-human biobanking. A total of 147 institutions concerned with biobanking of human samples and data were investigated by questionnaires and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Teaching evolutionary developmental biology: concepts, problems, and controversy.A. C. Love - 2013 - In Kostas Kampourakis (ed.), The Philosophy of Biology: a Companion for Educators. Dordrecht: Springer. pp. 323-341.
    Although sciences are often conceptualized in terms of theory confirmation and hypothesis testing, an equally important dimension of scientific reasoning is the structure of problems that guide inquiry. This problem structure is evident in several concepts central to evolutionary developmental biology (Evo-devo)—constraints, modularity, evolvability, and novelty. Because problems play an important role in biological practice, they should be included in biological pedagogy, especially when treating the issue of scientific controversy. A key feature of resolving controversy is synthesizing methodologies from different (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Sources of evolutionary contingency: chance variation and genetic drift.T. Y. William Wong - 2020 - Biology and Philosophy 35 (4):1-33.
    Contingency-theorists have gestured to a series of phenomena such as random mutations or rare Armageddon-like events as that which accounts for evolutionary contingency. These phenomena constitute a class, which may be aptly called the ‘sources of contingency’. In this paper, I offer a probabilistic conception of what it is to be a source of contingency and then examine two major candidates: chance variation and genetic drift, both of which have historically been taken to be ‘chancy’ in a number of different (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Proof of Concept Research.Steve Elliott - 2021 - Philosophy of Science 88 (2):258-280.
    Researchers often pursue proof of concept research, but criteria for evaluating such research remain poorly specified. This article proposes a general framework for proof of concept research that k...
    Download  
     
    Export citation  
     
    Bookmark  
  • Biological Explanation.Angela Potochnik - 2013 - In Kostas Kampourakis (ed.), The Philosophy of Biology: a Companion for Educators. Dordrecht: Springer. pp. 49-65.
    One of the central aims of science is explanation: scientists seek to uncover why things happen the way they do. This chapter addresses what kinds of explanations are formulated in biology, how explanatory aims influence other features of the field of biology, and the implications of all of this for biology education. Philosophical treatments of scientific explanation have been both complicated and enriched by attention to explanatory strategies in biology. Most basically, whereas traditional philosophy of science based explanation on derivation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ni cabalmente clásico, ni completamente molecular: un análisis del concepto de gen en la genética del comportamiento.Nahuel Pallitto & Guillermo Folguera - 2017 - Scientiae Studia 15 (2):439.
    Download  
     
    Export citation  
     
    Bookmark  
  • Probabilistic truth approximation and fixed points.David Atkinson & Jeanne Peijnenburg - 2020 - Synthese 199 (1-2):4195-4216.
    We use the method of fixed points to describe a form of probabilistic truth approximation which we illustrate by means of three examples. We then contrast this form of probabilistic truth approximation with another, more familiar kind, where no fixed points are used. In probabilistic truth approximation with fixed points the events are dependent on one another, but in the second kind they are independent. The first form exhibits a phenomenon that we call ‘fading origins’, the second one is subject (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Evolution in Space and Time: The Second Synthesis of Ecology, Evolutionary Biology, and the Philosophy of Biology.Mitchell Ryan Distin - 2023 - Self-published because fuck the leeches of Big Publishing.
    Change is the fundamental idea of evolution. Explaining the extraordinary biological change we see written in the history of genomes and fossil beds is the primary occupation of the evolutionary biologist. Yet it is a surprising fact that for the majority of evolutionary research, we have rarely studied how evolution typically unfolds in nature, in changing ecological environments, over space and time. While ecology played a major role in the eventual acceptance of the population genetic viewpoint of evolution in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Studying populations without molecular biology: Aster models and a new argument against reductionism.Emily Grosholz - 2011 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42 (2):246-251.
    During the past few decades, philosophers of biology have debated the issue of reductionism versus anti-reductionism, with both sides often claiming a ‘pluralist’ position. However, both sides also tend to focus on a single research paradigm, which analyzes living things in terms of certain macromolecular components. I offer a case study where biologists pursue other analytic pathways, in a tradition of quantitative genetics that originates with the initially purely mathematical theories of R. A. Fisher, J. B. S. Haldane, and Sewall (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Environmental Ethics.Roberta L. Millstein - 2013 - In Kostas Kampourakis (ed.), The Philosophy of Biology: a Companion for Educators. Dordrecht: Springer.
    A number of areas of biology raise questions about what is of value in the natural environment and how we ought to behave towards it: conservation biology, environmental science, and ecology, to name a few. Based on my experience teaching students from these and similar majors, I argue that the field of environmental ethics has much to teach these students. They come to me with pent-up questions and a feeling that more is needed to fully engage in their subjects, and (...)
    Download  
     
    Export citation  
     
    Bookmark