Switch to: References

Add citations

You must login to add citations.
  1. Epistemic Horizons and the Foundations of Quantum Mechanics.Jochen Szangolies - 2018 - Foundations of Physics 48 (12):1669-1697.
    In-principle restrictions on the amount of information that can be gathered about a system have been proposed as a foundational principle in several recent reconstructions of the formalism of quantum mechanics. However, it seems unclear precisely why one should be thus restricted. We investigate the notion of paradoxical self-reference as a possible origin of such epistemic horizons by means of a fixed-point theorem in Cartesian closed categories due to Lawvere that illuminates and unifies the different perspectives on self-reference.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On TAE Machines and Their Computational Power.Apostolos Syropoulos - 2019 - Logica Universalis 13 (2):165-170.
    Trail-And-Error machines have been proposed by Hintikka and Mutanen as an alternative formulation of the notion of computation. These machines extend the capabilities of the Turing machine and widen the theory of computation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A (Basis for a) Philosophy of a Theory of Fuzzy Computation.Apostolos Syropoulos - 2018 - Kairos 20 (1):181-201.
    Vagueness is a linguistic phenomenon as well as a property of physical objects. Fuzzy set theory is a mathematical model of vagueness that has been used to define vague models of computation. The prominent model of vague computation is the fuzzy Turing machine. This conceptual computing device gives an idea of what computing under vagueness means, nevertheless, it is not the most natural model. Based on the properties of this and other models of vague computing, an attempt is made to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Physical Church–Turing Thesis: Modest or Bold?Gualtiero Piccinini - 2011 - British Journal for the Philosophy of Science 62 (4):733-769.
    This article defends a modest version of the Physical Church-Turing thesis (CT). Following an established recent trend, I distinguish between what I call Mathematical CT—the thesis supported by the original arguments for CT—and Physical CT. I then distinguish between bold formulations of Physical CT, according to which any physical process—anything doable by a physical system—is computable by a Turing machine, and modest formulations, according to which any function that is computable by a physical system is computable by a Turing machine. (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On the Possibilities of Hypercomputing Supertasks.Vincent C. Müller - 2011 - Minds and Machines 21 (1):83-96.
    This paper investigates the view that digital hypercomputing is a good reason for rejection or re-interpretation of the Church-Turing thesis. After suggestion that such re-interpretation is historically problematic and often involves attack on a straw man (the ‘maximality thesis’), it discusses proposals for digital hypercomputing with Zeno-machines , i.e. computing machines that compute an infinite number of computing steps in finite time, thus performing supertasks. It argues that effective computing with Zeno-machines falls into a dilemma: either they are specified such (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A brief critique of pure hypercomputation.Paolo Cotogno - 2009 - Minds and Machines 19 (3):391-405.
    Hypercomputation—the hypothesis that Turing-incomputable objects can be computed through infinitary means—is ineffective, as the unsolvability of the halting problem for Turing machines depends just on the absence of a definite value for some paradoxical construction; nature and quantity of computing resources are immaterial. The assumption that the halting problem is solved by oracles of higher Turing degree amounts just to postulation; infinite-time oracles are not actually solving paradoxes, but simply assigning them conventional values. Special values for non-terminating processes are likewise (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Philosophy of Mind Is (in Part) Philosophy of Computer Science.Darren Abramson - 2011 - Minds and Machines 21 (2):203-219.
    In this paper I argue that whether or not a computer can be built that passes the Turing test is a central question in the philosophy of mind. Then I show that the possibility of building such a computer depends on open questions in the philosophy of computer science: the physical Church-Turing thesis and the extended Church-Turing thesis. I use the link between the issues identified in philosophy of mind and philosophy of computer science to respond to a prominent argument (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Effective Physical Processes and Active Information in Quantum Computing.Ignazio Licata - 2007 - Quantum Biosystems 1 (1):51-65.
    The recent debate on hypercomputation has raised new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics.We propose here the idea of “effective physical process” as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from an incomputable information (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation