Switch to: References

Add citations

You must login to add citations.
  1. Countable choice as a questionable uniformity principle.Peter M. Schuster - 2004 - Philosophia Mathematica 12 (2):106-134.
    Should weak forms of the axiom of choice really be accepted within constructive mathematics? A critical view of the Brouwer-Heyting-Kolmogorov interpretation, accompanied by the intention to include nondeterministic algorithms, leads us to subscribe to Richman's appeal for dropping countable choice. As an alternative interpretation of intuitionistic logic, we propose to renew dialogue semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Non-Measurability, Imprecise Credences, and Imprecise Chances.Yoaav Isaacs, Alan Hájek & John Hawthorne - 2021 - Mind 131 (523):892-916.
    – We offer a new motivation for imprecise probabilities. We argue that there are propositions to which precise probability cannot be assigned, but to which imprecise probability can be assigned. In such cases the alternative to imprecise probability is not precise probability, but no probability at all. And an imprecise probability is substantially better than no probability at all. Our argument is based on the mathematical phenomenon of non-measurable sets. Non-measurable propositions cannot receive precise probabilities, but there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Reverse formalism 16.Sam Sanders - 2020 - Synthese 197 (2):497-544.
    In his remarkable paper Formalism 64, Robinson defends his eponymous position concerning the foundations of mathematics, as follows:Any mention of infinite totalities is literally meaningless.We should act as if infinite totalities really existed. Being the originator of Nonstandard Analysis, it stands to reason that Robinson would have often been faced with the opposing position that ‘some infinite totalities are more meaningful than others’, the textbook example being that of infinitesimals. For instance, Bishop and Connes have made such claims regarding infinitesimals, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A nonstandard proof of a lemma from constructive measure theory.David A. Ross - 2006 - Mathematical Logic Quarterly 52 (5):494-497.
    Suppose that fn is a sequence of nonnegative functions with compact support on a locally compact metric space, that T is a nonnegative linear functional, and that equation imageT fn < T f0. A result of Bishop, foundational to a constructive theory of functional analysis, asserts the existence of a point x such that equation imagefn < f0. This paper extends this result to arbitrary Hausdorff spaces, and gives short proofs using nonstandard analysis. While such arguments used are not themselves (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Nonstandard Functional Interpretations and Categorical Models.Amar Hadzihasanovic & Benno van den Berg - 2017 - Notre Dame Journal of Formal Logic 58 (3):343-380.
    Recently, the second author, Briseid, and Safarik introduced nonstandard Dialectica, a functional interpretation capable of eliminating instances of familiar principles of nonstandard arithmetic—including overspill, underspill, and generalizations to higher types—from proofs. We show that the properties of this interpretation are mirrored by first-order logic in a constructive sheaf model of nonstandard arithmetic due to Moerdijk, later developed by Palmgren, and draw some new connections between nonstandard principles and principles that are rejected by strict constructivism. Furthermore, we introduce a variant of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Forcing in proof theory.Jeremy Avigad - 2004 - Bulletin of Symbolic Logic 10 (3):305-333.
    Paul Cohen’s method of forcing, together with Saul Kripke’s related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also has a place in traditional Hilbert-style proof theory, where the goal is to formalize portions of ordinary mathematics in restricted axiomatic theories, and study those theories in constructive or syntactic terms. I will discuss the aspects (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Intuitionistic choice and classical logic.Thierry Coquand & Erik Palmgren - 2000 - Archive for Mathematical Logic 39 (1):53-74.
    . The effort in providing constructive and predicative meaning to non-constructive modes of reasoning has almost without exception been applied to theories with full classical logic [4]. In this paper we show how to combine unrestricted countable choice, induction on infinite well-founded trees and restricted classical logic in constructively given models. These models are sheaf models over a $\sigma$ -complete Boolean algebra, whose topologies are generated by finite or countable covering relations. By a judicious choice of the Boolean algebra we (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Ultrasheaves and Double Negation.Jonas Eliasson & Steve Awodey - 2004 - Notre Dame Journal of Formal Logic 45 (4):235-245.
    Moerdijk has introduced a topos of sheaves on a category of filters. Following his suggestion, we prove that its double negation subtopos is the topos of sheaves on the subcategory of ultrafilters - the ultrasheaves. We then use this result to establish a double negation translation of results between the topos of ultrasheaves and the topos on filters.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Transfer principles in nonstandard intuitionistic arithmetic.Jeremy Avigad & Jeffrey Helzner - 2002 - Archive for Mathematical Logic 41 (6):581-602.
    Using a slight generalization, due to Palmgren, of sheaf semantics, we present a term-model construction that assigns a model to any first-order intuitionistic theory. A modification of this construction then assigns a nonstandard model to any theory of arithmetic, enabling us to reproduce conservation results of Moerdijk and Palmgren for nonstandard Heyting arithmetic. Internalizing the construction allows us to strengthen these results with additional transfer rules; we then show that even trivial transfer axioms or minor strengthenings of these rules destroy (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Weak theories of nonstandard arithmetic and analysis.Jeremy Avigad - manuscript
    A general method of interpreting weak higher-type theories of nonstandard arithmetic in their standard counterparts is presented. In particular, this provides natural nonstandard conservative extensions of primitive recursive arithmetic, elementary recursive arithmetic, and polynomial-time computable arithmetic. A means of formalizing basic real analysis in such theories is sketched.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Ultrapowers as sheaves on a category of ultrafilters.Jonas Eliasson - 2004 - Archive for Mathematical Logic 43 (7):825-843.
    In the paper we investigate the topos of sheaves on a category of ultrafilters. The category is described with the help of the Rudin-Keisler ordering of ultrafilters. It is shown that the topos is Boolean and two-valued and that the axiom of choice does not hold in it. We prove that the internal logic in the topos does not coincide with that in any of the ultrapowers. We also show that internal set theory, an axiomatic nonstandard set theory, can be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A functional interpretation for nonstandard arithmetic.Benno van den Berg, Eyvind Briseid & Pavol Safarik - 2012 - Annals of Pure and Applied Logic 163 (12):1962-1994.
    We introduce constructive and classical systems for nonstandard arithmetic and show how variants of the functional interpretations due to Gödel and Shoenfield can be used to rewrite proofs performed in these systems into standard ones. These functional interpretations show in particular that our nonstandard systems are conservative extensions of E-HAω and E-PAω, strengthening earlier results by Moerdijk and Palmgren, and Avigad and Helzner. We will also indicate how our rewriting algorithm can be used for term extraction purposes. To conclude the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Nonstandard proof methods in toposes.José Siqueira - 2024 - Annals of Pure and Applied Logic 175 (5):103424.
    Download  
     
    Export citation  
     
    Bookmark  
  • Saturated models of intuitionistic theories.Carsten Butz - 2004 - Annals of Pure and Applied Logic 129 (1-3):245-275.
    We use the language of categorical logic to construct generic saturated models of intuitionistic theories. Our main technique is the thorough study of the filter construction on categories with finite limits, which is the completion of subobject lattices under filtered meets. When restricted to coherent or Heyting categories, classifying categories of intuitionistic first-order theories, the resulting categories are filtered meet coherent categories, coherent categories with complete subobject lattices such that both finite disjunctions and existential quantification distribute over filtered meets. Such (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations