Switch to: References

Add citations

You must login to add citations.
  1. logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quotient topologies in constructive set theory and type theory.Hajime Ishihara & Erik Palmgren - 2006 - Annals of Pure and Applied Logic 141 (1):257-265.
    The standard construction of quotient spaces in topology uses full separation and power sets. We show how to make this construction using only the predicative methods available in constructive type theory and constructive set theory.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Embedding locales and formal topologies into positive topologies.Francesco Ciraulo & Giovanni Sambin - 2018 - Archive for Mathematical Logic 57 (7-8):755-768.
    A positive topology is a set equipped with two particular relations between elements and subsets of that set: a convergent cover relation and a positivity relation. A set equipped with a convergent cover relation is a predicative counterpart of a locale, where the given set plays the role of a set of generators, typically a base, and the cover encodes the relations between generators. A positivity relation enriches the structure of a locale; among other things, it is a tool to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The associated sheaf functor theorem in algebraic set theory.Nicola Gambino - 2008 - Annals of Pure and Applied Logic 156 (1):68-77.
    We prove a version of the associated sheaf functor theorem in Algebraic Set Theory. The proof is established working within a Heyting pretopos equipped with a system of small maps satisfying the axioms originally introduced by Joyal and Moerdijk. This result improves on the existing developments by avoiding the assumption of additional axioms for small maps and the use of collection sites.
    Download  
     
    Export citation  
     
    Bookmark   3 citations