Switch to: References

Add citations

You must login to add citations.
  1. The simplest axiom system for plane hyperbolic geometry.Victor Pambuccian - 2004 - Studia Logica 77 (3):385 - 411.
    We provide a quantifier-free axiom system for plane hyperbolic geometry in a language containing only absolute geometrically meaningful ternary operations (in the sense that they have the same interpretation in Euclidean geometry as well). Each axiom contains at most 4 variables. It is known that there is no axiom system for plane hyperbolic consisting of only prenex 3-variable axioms. Changing one of the axioms, one obtains an axiom system for plane Euclidean geometry, expressed in the same language, all of whose (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A common axiom set for classical and intuitionistic plane geometry.Melinda Lombard & Richard Vesley - 1998 - Annals of Pure and Applied Logic 95 (1-3):229-255.
    We describe a first order axiom set which yields the classical first order Euclidean geometry of Tarski when used with classical logic, and yields an intuitionistic Euclidean geometry when used with intuitionistic logic. The first order language has a single six place atomic predicate and no function symbols. The intuitionistic system has a computational interpretation in recursive function theory, that is, a realizability interpretation analogous to those given by Kleene for intuitionistic arithmetic and analysis. This interpretation shows the unprovability in (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Axiomatizing geometric constructions.Victor Pambuccian - 2008 - Journal of Applied Logic 6 (1):24-46.
    Download  
     
    Export citation  
     
    Bookmark   7 citations