Switch to: References

Add citations

You must login to add citations.
  1. Philosophical Method and Galileo's Paradox of Infinity.Matthew W. Parker - 2008 - In Bart Van Kerkhove (ed.), New Perspectives on Mathematical Practices: Essays in Philosophy and History of Mathematics : Brussels, Belgium, 26-28 March 2007. World Scientfic.
    We consider an approach to some philosophical problems that I call the Method of Conceptual Articulation: to recognize that a question may lack any determinate answer, and to re-engineer concepts so that the question acquires a definite answer in such a way as to serve the epistemic motivations behind the question. As a case study we examine “Galileo’s Paradox”, that the perfect square numbers seem to be at once as numerous as the whole numbers, by one-to-one correspondence, and yet less (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computing the Uncomputable; or, The Discrete Charm of Second-Order Simulacra.Matthew W. Parker - 2009 - Synthese 169 (3):447-463.
    We examine a case in which non-computable behavior in a model is revealed by computer simulation. This is possible due to differing notions of computability for sets in a continuous space. The argument originally given for the validity of the simulation involves a simpler simulation of the simulation, still further simulations thereof, and a universality conjecture. There are difficulties with that argument, but there are other, heuristic arguments supporting the qualitative results. It is urged, using this example, that absolute validation, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations