Switch to: References

Citations of:

Philosophical method and Galileo's paradox of infinity

In Bart Van Kerkhove (ed.), New Perspectives on Mathematical Practices: Essays in Philosophy and History of Mathematics. World Scientific (2009)

Add citations

You must login to add citations.
  1. Set Size and the Part–Whole Principle.Matthew W. Parker - 2013 - Review of Symbolic Logic (4):1-24.
    Recent work has defended “Euclidean” theories of set size, in which Cantor’s Principle (two sets have equally many elements if and only if there is a one-to-one correspondence between them) is abandoned in favor of the Part-Whole Principle (if A is a proper subset of B then A is smaller than B). It has also been suggested that Gödel’s argument for the unique correctness of Cantor’s Principle is inadequate. Here we see from simple examples, not that Euclidean theories of set (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Forever Finite: The Case Against Infinity (Expanded Edition).Kip K. Sewell - 2023 - Alexandria, VA: Rond Books.
    EXPANDED EDITION (eBook): -/- Infinity Is Not What It Seems...Infinity is commonly assumed to be a logical concept, reliable for conducting mathematics, describing the Universe, and understanding the divine. Most of us are educated to take for granted that there exist infinite sets of numbers, that lines contain an infinite number of points, that space is infinite in expanse, that time has an infinite succession of events, that possibilities are infinite in quantity, and over half of the world’s population believes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cosmic Skepticism and the Beginning of Physical Reality (Doctoral Dissertation).Linford Dan - 2022 - Dissertation, Purdue University
    This dissertation is concerned with two of the largest questions that we can ask about the nature of physical reality: first, whether physical reality begin to exist and, second, what criteria would physical reality have to fulfill in order to have had a beginning? Philosophers of religion and theologians have previously addressed whether physical reality began to exist in the context of defending the Kal{\'a}m Cosmological Argument (KCA) for theism, that is, (P1) everything that begins to exist has a cause (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Infinite Lottery Paradox.John D. Norton & Matthew W. Parker - 2022 - Axiomathes 32 (1):1-6.
    In a fair, infinite lottery, it is possible to conclude that drawing a number divisible by four is strictly less likely than drawing an even number; and, with apparently equal cogency, that drawing a number divisible by four is equally as likely as drawing an even number.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Minimality Constraint on Grounding.Jonas Werner - 2020 - Erkenntnis 85 (5):1153-1168.
    It is widely acknowledged that some truths or facts don’t have a minimal full ground [see e.g. Fine ]. Every full ground of them contains a smaller full ground. In this paper I’ll propose a minimality constraint on immediate grounding and I’ll show that it doesn’t fall prey to the arguments that tell against an unqualified minimality constraint. Furthermore, the assumption that all cases of grounding can be understood in terms of immediate grounding will be defended. This assumption guarantees that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The negative theology of absolute infinity: Cantor, mathematics, and humility.Rico Gutschmidt & Merlin Carl - 2024 - International Journal for Philosophy of Religion 95 (3):233-256.
    Cantor argued that absolute infinity is beyond mathematical comprehension. His arguments imply that the domain of mathematics cannot be grasped by mathematical means. We argue that this inability constitutes a foundational problem. For Cantor, however, the domain of mathematics does not belong to mathematics, but to theology. We thus discuss the theological significance of Cantor’s treatment of absolute infinity and show that it can be interpreted in terms of negative theology. Proceeding from this interpretation, we refer to the recent debate (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Size and Function.Bruno Whittle - 2018 - Erkenntnis 83 (4):853-873.
    Are there different sizes of infinity? That is, are there infinite sets of different sizes? This is one of the most natural questions that one can ask about the infinite. But it is of course generally taken to be settled by mathematical results, such as Cantor’s theorem, to the effect that there are infinite sets without bijections between them. These results settle the question, given an almost universally accepted principle relating size to the existence of functions. The principle is: for (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Gödel's Argument for Cantorian Cardinality.Matthew W. Parker - 2017 - Noûs 53 (2):375-393.
    On the first page of “What is Cantor's Continuum Problem?”, Gödel argues that Cantor's theory of cardinality, where a bijection implies equal number, is in some sense uniquely determined. The argument, involving a thought experiment with sets of physical objects, is initially persuasive, but recent authors have developed alternative theories of cardinality that are consistent with the standard set theory ZFC and have appealing algebraic features that Cantor's powers lack, as well as some promise for applications. Here we diagnose Gödel's (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hierarchical Propositions.Bruno Whittle - 2017 - Journal of Philosophical Logic 46 (2):215-231.
    The notion of a proposition is central to philosophy. But it is subject to paradoxes. A natural response is a hierarchical account and, ever since Russell proposed his theory of types in 1908, this has been the strategy of choice. But in this paper I raise a problem for such accounts. While this does not seem to have been recognized before, it would seem to render existing such accounts inadequate. The main purpose of the paper, however, is to provide a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)On Infinite Size.Bruno Whittle - 2015 - In Oxford Studies in Metaphysics: Volume 9. Oxford University Press. pp. 3-19.
    Cantor showed that there are infinite sets that do not have one-to-one correspondences between them. The standard understanding of this result is that it shows that there are different sizes of infinity. This paper challenges this standard understanding, and argues, more generally, that we do not have any reason to think that there are different sizes of infinity. Two arguments are given against the claim that Cantor established that there are different such sizes: one involves an analogy between Cantor’s result (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations