Switch to: References

Add citations

You must login to add citations.
  1. Wittgenstein on Incompleteness Makes Paraconsistent Sense.Francesco Berto - 2013 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 257--276.
    I provide an interpretation of Wittgenstein's much criticized remarks on Gödel's First Incompleteness Theorem in the light of paraconsistent arithmetics: in taking Gödel's proof as a paradoxical derivation, Wittgenstein was right, given his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. I show that the models of paraconsistent arithmetics (obtained via the Meyer-Mortensen (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Can Gödel's Incompleteness Theorem be a Ground for Dialetheism?Seungrak Choi - 2017 - Korean Journal of Logic 20 (2):241-271.
    Dialetheism is the view that there exists a true contradiction. This paper ventures to suggest that Priest’s argument for Dialetheism from Gödel’s theorem is unconvincing as the lesson of Gödel’s proof (or Rosser’s proof) is that any sufficiently strong theories of arithmetic cannot be both complete and consistent. In addition, a contradiction is derivable in Priest’s inconsistent and complete arithmetic. An alternative argument for Dialetheism is given by applying Gödel sentence to the inconsistent and complete theory of arithmetic. We argue, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Is there an inconsistent primitive recursive relation?Seungrak Choi - 2022 - Synthese 200 (5):1-12.
    The present paper focuses on Graham Priest’s claim that even primitive recursive relations may be inconsistent. Although he carefully presented his claim using the expression “may be,” Priest made a definite claim that even numerical equations can be inconsistent. His argument relies heavily on the fact that there is an inconsistent model for arithmetic. After summarizing Priest’s argument for the inconsistent primitive recursive relation, I first discuss the fact that his argument has a weak foundation to explain that the existence (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axioms for finite collapse models of arithmetic.Andrew Tedder - 2015 - Review of Symbolic Logic 8 (3):529-539.
    The collapse models of arithmetic are inconsistent, nontrivial models obtained from ℕ and set out in the Logic of Paradox (LP). They are given a general treatment by Priest (Priest, 2000). Finite collapse models are decidable, and thus axiomatizable, because finite. LP, however, is ill-suited to normal axiomatic reasoning, as it invalidates Modus Ponens, and almost all other usual conditional inferences. I set out a logic, A3, first given by Avron (Avron, 1991), and give a first order axiom system for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Scope of Gödel’s First Incompleteness Theorem.Bernd Buldt - 2014 - Logica Universalis 8 (3-4):499-552.
    Guided by questions of scope, this paper provides an overview of what is known about both the scope and, consequently, the limits of Gödel’s famous first incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • New arguments for adaptive logics as unifying frame for the defeasible handling of inconsistency.Diderik Batens - 2013 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 101--122.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On elimination of quantifiers in some non‐classical mathematical theories.Guillermo Badia & Andrew Tedder - 2018 - Mathematical Logic Quarterly 64 (3):140-154.
    Elimination of quantifiers is shown to fail dramatically for a group of well‐known mathematical theories (classically enjoying the property) against a wide range of relevant logical backgrounds. Furthermore, it is suggested that only by moving to more extensional underlying logics can we get the property back.
    Download  
     
    Export citation  
     
    Bookmark