Switch to: References

Add citations

You must login to add citations.
  1. Does Homotopy Type Theory Provide a Foundation for Mathematics?James Ladyman & Stuart Presnell - 2016 - British Journal for the Philosophy of Science:axw006.
    Homotopy Type Theory is a putative new foundation for mathematics grounded in constructive intensional type theory that offers an alternative to the foundations provided by ZFC set theory and category theory. This article explains and motivates an account of how to define, justify, and think about HoTT in a way that is self-contained, and argues that, so construed, it is a candidate for being an autonomous foundation for mathematics. We first consider various questions that a foundation for mathematics might be (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Non-deductive justification in mathematics.A. C. Paseau - 2023 - Handbook of the History and Philosophy of Mathematical Practice.
    In mathematics, the deductive method reigns. Without proof, a claim remains unsolved, a mere conjecture, not something that can be simply assumed; when a proof is found, the problem is solved, it turns into a “result,” something that can be relied on. So mathematicians think. But is there more to mathematical justification than proof? -/- The answer is an emphatic yes, as I explain in this article. I argue that non-deductive justification is in fact pervasive in mathematics, and that it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Deductivism in the Philosophy of Mathematics.Alexander Paseau & Fabian Pregel - 2023 - Stanford Encyclopedia of Philosophy 2023.
    Deductivism says that a mathematical sentence s should be understood as expressing the claim that s deductively follows from appropriate axioms. For instance, deductivists might construe “2+2=4” as “the sentence ‘2+2=4’ deductively follows from the axioms of arithmetic”. Deductivism promises a number of benefits. It captures the fairly common idea that mathematics is about “what can be deduced from the axioms”; it avoids an ontology of abstract mathematical objects; and it maintains that our access to mathematical truths requires nothing beyond (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Recalcitrant Disagreement in Mathematics: An “Endless and Depressing Controversy” in the History of Italian Algebraic Geometry.Silvia De Toffoli & Claudio Fontanari - 2023 - Global Philosophy 33 (38):1-29.
    If there is an area of discourse in which disagreement is virtually absent, it is mathematics. After all, mathematicians justify their claims with deductive proofs: arguments that entail their conclusions. But is mathematics really exceptional in this respect? Looking at the history and practice of mathematics, we soon realize that it is not. First, deductive arguments must start somewhere. How should we choose the starting points (i.e., the axioms)? Second, mathematicians, like the rest of us, are fallible. Their ability to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Arithmetic, enumerative induction and size bias.A. C. Paseau - 2021 - Synthese 199 (3-4):9161-9184.
    Number theory abounds with conjectures asserting that every natural number has some arithmetic property. An example is Goldbach’s Conjecture, which states that every even number greater than 2 is the sum of two primes. Enumerative inductive evidence for such conjectures usually consists of small cases. In the absence of supporting reasons, mathematicians mistrust such evidence for arithmetical generalisations, more so than most other forms of non-deductive evidence. Some philosophers have also expressed scepticism about the value of enumerative inductive evidence in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Proofs, Reliable Processes, and Justification in Mathematics.Yacin Hamami - 2021 - British Journal for the Philosophy of Science 74 (4):1027-1045.
    Although there exist today a variety of non-deductive reliable processes able to determine the truth of certain mathematical propositions, proof remains the only form of justification accepted in mathematical practice. Some philosophers and mathematicians have contested this commonly accepted epistemic superiority of proof on the ground that mathematicians are fallible: when the deductive method is carried out by a fallible agent, then it comes with its own level of reliability, and so might happen to be equally or even less reliable (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Probabilistic Proofs, Lottery Propositions, and Mathematical Knowledge.Yacin Hamami - 2021 - Philosophical Quarterly 72 (1):77-89.
    In mathematics, any form of probabilistic proof obtained through the application of a probabilistic method is not considered as a legitimate way of gaining mathematical knowledge. In a series of papers, Don Fallis has defended the thesis that there are no epistemic reasons justifying mathematicians’ rejection of probabilistic proofs. This paper identifies such an epistemic reason. More specifically, it is argued here that if one adopts a conception of mathematical knowledge in which an epistemic subject can know a mathematical proposition (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Groundwork for a Fallibilist Account of Mathematics.Silvia De Toffoli - 2021 - Philosophical Quarterly 7 (4):823-844.
    According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too high. I then (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Set-theoretic justification and the theoretical virtues.John Heron - 2020 - Synthese 199 (1-2):1245-1267.
    Recent discussions of how axioms are extrinsically justified have appealed to abductive considerations: on such accounts, axioms are adopted on the basis that they constitute the best explanation of some mathematical data, or phenomena. In the first part of this paper, I set out a potential problem caused by the appeal made to the notion of mathematical explanation and suggest that it can be remedied once it is noted that all the justificatory work is done by appeal to the theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Are Aesthetic Judgements Purely Aesthetic? Testing the Social Conformity Account.Matthew Inglis & Andrew Aberdein - 2020 - ZDM 52 (6):1127-1136.
    Many of the methods commonly used to research mathematical practice, such as analyses of historical episodes or individual cases, are particularly well-suited to generating causal hypotheses, but less well-suited to testing causal hypotheses. In this paper we reflect on the contribution that the so-called hypothetico-deductive method, with a particular focus on experimental studies, can make to our understanding of mathematical practice. By way of illustration, we report an experiment that investigated how mathematicians attribute aesthetic properties to mathematical proofs. We demonstrate (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Evidence, Proofs, and Derivations.Andrew Aberdein - 2019 - ZDM 51 (5):825-834.
    The traditional view of evidence in mathematics is that evidence is just proof and proof is just derivation. There are good reasons for thinking that this view should be rejected: it misrepresents both historical and current mathematical practice. Nonetheless, evidence, proof, and derivation are closely intertwined. This paper seeks to tease these concepts apart. It emphasizes the role of argumentation as a context shared by evidence, proofs, and derivations. The utility of argumentation theory, in general, and argumentation schemes, in particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Why Is Proof the Only Way to Acquire Mathematical Knowledge?Marc Lange - 2024 - Australasian Journal of Philosophy 102 (2):333-353.
    This paper proposes an account of why proof is the only way to acquire knowledge of some mathematical proposition’s truth. Admittedly, non-deductive arguments for mathematical propositions can be strong and play important roles in mathematics. But this paper proposes a necessary condition for knowledge that can be satisfied by putative proofs (and proof sketches), as well as by non-deductive arguments in science, but not by non-deductive arguments from mathematical evidence. The necessary condition concerns whether we can justly expect that if (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • John Corcoran.José M. Sagüillo, Michael Scanlan & Stewart Shapiro - 2021 - History and Philosophy of Logic 42 (3):201-223.
    We present a memorial summary of the professional life and contributions to logic of John Corcoran. We also provide a full list of his many publications.Courtesy of Lynn Corcoran.
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-deductive methods in mathematics.Alan Baker - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The explanatory and heuristic power of mathematics.Marianna Antonutti Marfori, Sorin Bangu & Emiliano Ippoliti - 2023 - Synthese 201 (5):1-12.
    Download  
     
    Export citation  
     
    Bookmark