Switch to: References

Add citations

You must login to add citations.
  1. Relationships between computability-theoretic properties of problems.Rod Downey, Noam Greenberg, Matthew Harrison-Trainor, Ludovic Patey & Dan Turetsky - 2022 - Journal of Symbolic Logic 87 (1):47-71.
    A problem is a multivalued function from a set of instances to a set of solutions. We consider only instances and solutions coded by sets of integers. A problem admits preservation of some computability-theoretic weakness property if every computable instance of the problem admits a solution relative to which the property holds. For example, cone avoidance is the ability, given a noncomputable set A and a computable instance of a problem ${\mathsf {P}}$, to find a solution relative to which A (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • THE REVERSE MATHEMATICS OF ${\mathsf {CAC\ FOR\ TREES}}$.Julien Cervelle, William Gaudelier & Ludovic Patey - 2024 - Journal of Symbolic Logic 89 (3):1189-1211.
    ${\mathsf {CAC\ for\ trees}}$ is the statement asserting that any infinite subtree of $\mathbb {N}^{<\mathbb {N}}$ has an infinite path or an infinite antichain. In this paper, we study the computational strength of this theorem from a reverse mathematical viewpoint. We prove that ${\mathsf {CAC\ for\ trees}}$ is robust, that is, there exist several characterizations, some of which already appear in the literature, namely, the statement $\mathsf {SHER}$ introduced by Dorais et al. [8], and the statement $\mathsf {TAC}+\mathsf {B}\Sigma ^0_2$ (...)
    Download  
     
    Export citation  
     
    Bookmark