Switch to: Citations

Add references

You must login to add references.
  1. On the Strength of Ramsey's Theorem.David Seetapun & Theodore A. Slaman - 1995 - Notre Dame Journal of Formal Logic 36 (4):570-582.
    We show that, for every partition F of the pairs of natural numbers and for every set C, if C is not recursive in F then there is an infinite set H, such that H is homogeneous for F and C is not recursive in H. We conclude that the formal statement of Ramsey's Theorem for Pairs is not strong enough to prove , the comprehension scheme for arithmetical formulas, within the base theory , the comprehension scheme for recursive formulas. (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • On notions of computability-theoretic reduction between Π21 principles.Denis R. Hirschfeldt & Carl G. Jockusch - 2016 - Journal of Mathematical Logic 16 (1):1650002.
    Several notions of computability-theoretic reducibility between [Formula: see text] principles have been studied. This paper contributes to the program of analyzing the behavior of versions of Ramsey’s Theorem and related principles under these notions. Among other results, we show that for each [Formula: see text], there is an instance of RT[Formula: see text] all of whose solutions have PA degree over [Formula: see text] and use this to show that König’s Lemma lies strictly between RT[Formula: see text] and RT[Formula: see (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The strength of infinitary Ramseyan principles can be accessed by their densities.Andrey Bovykin & Andreas Weiermann - 2017 - Annals of Pure and Applied Logic 168 (9):1700-1709.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Open questions about Ramsey-type statements in reverse mathematics.Ludovic Patey - 2016 - Bulletin of Symbolic Logic 22 (2):151-169.
    Ramsey’s theorem states that for any coloring of then-element subsets of ℕ with finitely many colors, there is an infinite setHsuch that alln-element subsets ofHhave the same color. The strength of consequences of Ramsey’s theorem has been extensively studied in reverse mathematics and under various reducibilities, namely, computable reducibility and uniform reducibility. Our understanding of the combinatorics of Ramsey’s theorem and its consequences has been greatly improved over the past decades. In this paper, we state some questions which naturally arose (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations