Switch to: References

Add citations

You must login to add citations.
  1. Natural Formalization: Deriving the Cantor-Bernstein Theorem in Zf.Wilfried Sieg & Patrick Walsh - 2021 - Review of Symbolic Logic 14 (1):250-284.
    Natural Formalization proposes a concrete way of expanding proof theory from the meta-mathematical investigation of formal theories to an examination of “the concept of the specifically mathematical proof.” Formal proofs play a role for this examination in as much as they reflect the essential structure and systematic construction of mathematical proofs. We emphasize three crucial features of our formal inference mechanism: (1) the underlying logical calculus is built for reasoning with gaps and for providing strategic directions, (2) the mathematical frame (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • For Cybersecurity, Computer Science Must Rely on Strongly-Typed Actors.Carl Hewitt - unknown
    This article shows how fundamental higher-order theories of mathematical structures of computer science are categorical meaning that they can be axiomatized up to a unique isomorphism thereby removing any ambiguity in the mathematical structures being axiomatized. Having these mathematical structures precisely defined can make systems more secure because there are fewer ambiguities and holes for cyberattackers to exploit. For example, there are no infinite elements in models for natural numbers to be exploited. On the other hand, the 1st-order theories and (...)
    Download  
     
    Export citation  
     
    Bookmark