Switch to: References

Add citations

You must login to add citations.
  1. Die Berliner Gruppe und der Wiener Kreis: Gemeinsamkeiten und Unterschiede.Nikolay Milkov - 2008 - In Martina Fürst, Wolfgang Gombocz & Christian Hiebaum (eds.), Analysen, Argumente, Ansätze. Beiträge Zum 8. Internationalen Kongress der Österreichischen Gesellschaft für Philosophie in Graz. Ontos. pp. 55-63.
    Unsere These lautet, dass die Geschichte des logischen Empirismus bisher nicht in ihrer ganzen Komplexität dargestellt wurde. Es herrscht das Bild vor, dass vor allem der Wiener Kreis die wissenschaftliche Philosophie seiner Zeit dominiert habe. In Wirklichkeit waren Hans Reichenbach und die Philosophen und Wissenschaftler in seiner Gruppe mehr als nur geistige Verwandte der Wiener logischen Empiristen. Die Berliner Gruppe war ein gleichberechtigter Partner bei der Verbreitung wissenschaftlicher Philosophie im deutschsprachigen Raum um 1930 und schlug dabei durchaus einen individuellen Weg (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Leonard Nelson and Metaphysical Knowledge against the Neo-Kantian Background.Tomasz Kubalica - 2017 - Diametros 52:64-80.
    Leonard Nelson is known primarily as a critic of epistemology in the Neo-Kantian meaning of the term. The aim of this paper is to investigate the presuppositions and consequences of his critique. I claim that what has rarely been discussed in this context is the problem of the possibility of metaphysics. By the impossibility of epistemology Nelson means the possibility of metaphysical knowledge. I intend to devote this paper to the analysis of this problem in relation to the Neo-Kantian background.
    Download  
     
    Export citation  
     
    Bookmark  
  • Edmund Husserl (1859-1938).Denis Fisette (ed.) - 2009 - Montreal: Philosophiques.
    Ce numéro de Philosophiques rend hommage au philosophe d’origine autrichienne Edmund Husserl (1859-1938) à l’occasion de son 150e anniversaire de naissance. Il est consacré à l’oeuvre du jeune Husserl durant la période de Halle (1886-1901) et réunit plusieurs spécialistes des études husserliennes qui jettent un regard neuf sur cette période méconnue dans la philosophie du père de la phénoménologie. Avec un souci de situer Husserl dans le contexte historique auquel appartiennent ses principaux interlocuteurs durant cette période, ces études portent sur (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Berlin Group and the Vienna Circle: Affinities and Divergences.Nikolay Milkov - 2013 - In Nikolay Milkov & Volker Peckhaus (eds.), The Berlin Group and the Philosophy of Logical Empiricism. Berlin: Springer. pp. 3--32.
    The Berlin Group was an equal partner with the Vienna Circle as a school of scientific philosophy, albeit one that pursued an itinerary of its own. But while the latter presented its defining projects in readily discernible terms and became immediately popular, the Berlin Group, whose project was at least as sig-nificant as that of its Austrian counterpart, remained largely unrecognized. The task of this chapter is to distinguish the Berliners’ work from that of the Vienna Circle and to bring (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Saunders Mac Lane (1909–2005): His mathematical life and philosophical works.Colin McLarty - 2005 - Philosophia Mathematica 13 (3):237-251.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Zermelo and set theory.Akihiro Kanamori - 2004 - Bulletin of Symbolic Logic 10 (4):487-553.
    Ernst Friedrich Ferdinand Zermelo transformed the set theory of Cantor and Dedekind in the first decade of the 20th century by incorporating the Axiom of Choice and providing a simple and workable axiomatization setting out generative set-existence principles. Zermelo thereby tempered the ontological thrust of early set theory, initiated the delineation of what is to be regarded as set-theoretic, drawing out the combinatorial aspects from the logical, and established the basic conceptual framework for the development of modern set theory. Two (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • ‘Mathematical Platonism’ Versus Gathering the Dead: What Socrates teaches Glaucon &dagger.Colin McLarty - 2005 - Philosophia Mathematica 13 (2):115-134.
    Glaucon in Plato's _Republic_ fails to grasp intermediates. He confuses pursuing a goal with achieving it, and so he adopts ‘mathematical platonism’. He says mathematical objects are eternal. Socrates urges a seriously debatable, and seriously defensible, alternative centered on the destruction of hypotheses. He offers his version of geometry and astronomy as refuting the charge that he impiously ‘ponders things up in the sky and investigates things under the earth and makes the weaker argument the stronger’. We relate his account (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Origins of Eternal Truth in Modern Mathematics: Hilbert to Bourbaki and Beyond.Leo Corry - 1997 - Science in Context 10 (2):253-296.
    The ArgumentThe belief in the existence of eternal mathematical truth has been part of this science throughout history. Bourbaki, however, introduced an interesting, and rather innovative twist to it, beginning in the mid-1930s. This group of mathematicians advanced the view that mathematics is a science dealing with structures, and that it attains its results through a systematic application of the modern axiomatic method. Like many other mathematicians, past and contemporary, Bourbaki understood the historical development of mathematics as a series of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • La Mannigfaltigkeitslehre de Husserl.Claire Hill - 2009 - Philosophiques 36 (2):447-465.
    Pour projeter de la lumière dans de nombreux coins et recoins obscurs de la logique pure de Husserl et dans les rapports entre sa logique formelle et sa logique transcendantale, et combler des lacunes empêchant qu’on arrive à une appréciation juste de sa Mannigfaltigkeitslehre, ou théorie de multiplicités, on examine comment, en prônant une théorie des systèmes déductifs, ou systèmes d’axiomes, comme tâche suprême de la logique pure, Husserl cherchait à résoudre certains problèmes épineux auxquels il s’était heurté en écrivant (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hilberts Logik. Von der Axiomatik zur Beweistheorie.Volker Peckhaus - 1995 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 3 (1):65-86.
    This paper gives a survey of David Hilbert's (1862–1943) changing attitudes towards logic. The logical theory of the Göttingen mathematician is presented as intimately linked to his studies on the foundation of mathematics. Hilbert developed his logical theory in three stages: (1) in his early axiomatic programme until 1903 Hilbert proposed to use the traditional theory of logical inferences to prove the consistency of his set of axioms for arithmetic. (2) After the publication of the logical and set-theoretical paradoxes by (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Zionist Internationalism through Number Theory: Edmund Landau at the Opening of the Hebrew University in 1925.Leo Corry & Norbert Schappacher - 2010 - Science in Context 23 (4):427-471.
    ArgumentThis article gives the background to a public lecture delivered in Hebrew by Edmund Landau at the opening ceremony of the Hebrew University in Jerusalem in 1925. On the surface, the lecture appears to be a slightly awkward attempt by a distinguished German-Jewish mathematician to popularize a few number-theoretical tidbits. However, quite unexpectedly, what emerges here is Landau's personal blend of Zionism, German nationalism, and the proud ethos of pure, rigorous mathematics – against the backdrop of the situation of Germany (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hugh maccoll: eine bibliographische erschließung seiner hauptwerke und notizen zu ihrer rezeptionsgeschichte.Shahid Rahman - 1997 - History and Philosophy of Logic 18 (3):165-183.
    The work of Hugh MacColl (1837–1909) suffered the same fate after his death as before it:despite being vaguely alluded to and in part even commended, on the whole it has remained an unknown quantity. Even worse, those of his ideas which have played a decisive role in the history of logic have been credited to his successors; this is especially the case with the definition of strict implication and the first formal development of formal modal logic. This paper takes an (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • David Hilbert and the axiomatization of physics (1894–1905).Leo Corry - 1997 - Archive for History of Exact Sciences 51 (2):83-198.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Der Durchgang durch das Unmögliche . An Unpublished Manuscript from the Husserl-Archives.Carlo Ierna - 2011 - Husserl Studies 27 (3):217-226.
    The article introduces and discusses an unpublished manuscript by Edmund Husserl, conserved at the Husserl-Archives Leuven with signature K I 26, pp. 73a–73b. The article is followed by the text of the manuscript in German and in an English translation. The manuscript, titled “The Transition through the Impossible” ( Der Durchgang durch das Unmögliche ), was part of the material Husserl used for his 1901 Doppelvortrag in Göttingen. In the manuscript, the impossible is characterized as the “sphere of objectlessness” ( (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Alexandre Koyré im “Mekka der Mathematik”.Paola Zambelli - 1999 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 7 (1):208-230.
    In 1909 A. Koyré (1892–1964) came to Göttingen as an exile and there became a student of Edmund Husserl and other philosophers (A. Reinach, M. Scheler): already before leaving his country Russia Koyré read Husserl'sLogical Investigations, a text which interested greatly Russian philosophers and was translated into Russian in the same year. As many other contemporary philosophers, in Göttingen they were discussing on the fundaments of mathematic, Cantor's set theory and Russell's antinomies. On this problems Koyré wrote a long paper (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations