Switch to: References

Add citations

You must login to add citations.
  1. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why Aristotle Can’t Do without Intelligible Matter.Emily Katz - 2023 - Ancient Philosophy Today 5 (2):123-155.
    I argue that intelligible matter, for Aristotle, is what makes mathematical objects quantities and divisible in their characteristic way. On this view, the intelligible matter of a magnitude is a sensible object just insofar as it has dimensional continuity, while that of a number is a plurality just insofar as it consists of indivisibles that measure it. This interpretation takes seriously Aristotle's claim that intelligible matter is the matter of mathematicals generally – not just of geometricals. I also show that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Aristotle on the Objects of Natural and Mathematical Sciences.Joshua Mendelsohn - 2023 - Ancient Philosophy Today 5 (2):98-122.
    In a series of recent papers, Emily Katz has argued that on Aristotle's view mathematical sciences are in an important respect no different from most natural sciences: They study sensible substances, but not qua sensible. In this paper, I argue that this is only half the story. Mathematical sciences are distinctive for Aristotle in that they study things ‘from’, ‘through’ or ‘in’ abstraction, whereas natural sciences study things ‘like the snub’. What this means, I argue, is that natural sciences must (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Aristotle's Greatest Difficulty: Universality of Thought in Metaphysics M10 and Θ9.Robert Roreitner - 2023 - Revue de Philosophie Ancienne 41 (2):1-25.
    Download  
     
    Export citation  
     
    Bookmark  
  • Modalité et changement: δύναμις et cinétique aristotélicienne.Marion Florian - 2023 - Dissertation, Université Catholique de Louvain
    The present PhD dissertation aims to examine the relation between modality and change in Aristotle’s metaphysics. -/- On the one hand, Aristotle supports his modal realism (i.e., worldly objects have modal properties - potentialities and essences - that ground the ascriptions of possibility and necessity) by arguing that the rejection of modal realism makes change inexplicable, or, worse, banishes it from the realm of reality. On the other hand, the Stagirite analyses processes by means of modal notions (‘change is the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Aristotle's Theory of Abstraction.Allan Bäck - 2014 - Cham, Switzerland: Springer.
    This book investigates Aristotle’s views on abstraction and explores how he uses it. In this work, the author follows Aristotle in focusing on the scientific detail first and then approaches the metaphysical claims, and so creates a reconstructed theory that explains many puzzles of Aristotle’s thought. Understanding the details of his theory of relations and abstraction further illuminates his theory of universals. Some of the features of Aristotle’s theory of abstraction developed in this book include: abstraction is a relation; perception (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Aristotle's Mathematicals in Metaphysics M.3 and N.6.Andrew Younan - 2019 - Journal of Speculative Philosophy 33 (4):644-663.
    Aristotle ends Metaphysics books M–N with an account of how one can get the impression that Platonic Form-numbers can be causes. Though these passages are all admittedly polemic against the Platonic understanding, there is an undercurrent wherein Aristotle seems to want to explain in his own terms the evidence the Platonist might perceive as supporting his view, and give any possible credit where credit is due. Indeed, underlying this explanation of how the Platonist may have formed his impression, we discover (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Plato's Problem: An Introduction to Mathematical Platonism.Marco Panza & Andrea Sereni - 2013 - New York: Palgrave-Macmillan. Edited by Andrea Sereni & Marco Panza.
    What is mathematics about? And if it is about some sort of mathematical reality, how can we have access to it? This is the problem raised by Plato, which still today is the subject of lively philosophical disputes. This book traces the history of the problem, from its origins to its contemporary treatment. It discusses the answers given by Aristotle, Proclus and Kant, through Frege's and Russell's versions of logicism, Hilbert's formalism, Gödel's platonism, up to the the current debate on (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Epistemology of Geometry I: the Problem of Exactness.Anne Newstead & Franklin James - 2010 - Proceedings of the Australasian Society for Cognitive Science 2009.
    We show how an epistemology informed by cognitive science promises to shed light on an ancient problem in the philosophy of mathematics: the problem of exactness. The problem of exactness arises because geometrical knowledge is thought to concern perfect geometrical forms, whereas the embodiment of such forms in the natural world may be imperfect. There thus arises an apparent mismatch between mathematical concepts and physical reality. We propose that the problem can be solved by emphasizing the ways in which the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Geometrical Objects as Properties of Sensibles: Aristotle’s Philosophy of Geometry.Emily Katz - 2019 - Phronesis 64 (4):465-513.
    There is little agreement about Aristotle’s philosophy of geometry, partly due to the textual evidence and partly part to disagreement over what constitutes a plausible view. I keep separate the questions ‘What is Aristotle’s philosophy of geometry?’ and ‘Is Aristotle right?’, and consider the textual evidence in the context of Greek geometrical practice, and show that, for Aristotle, plane geometry is about properties of certain sensible objects—specifically, dimensional continuity—and certain properties possessed by actual and potential compass-and-straightedge drawings qua quantitative and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • An Absurd Accumulation: Metaphysics M.2, 1076b11-36.Emily Katz - 2014 - Phronesis 59 (4):343-368.
    The opening argument in the Metaphysics M.2 series targeting separate mathematical objects has been dismissed as flawed and half-hearted. Yet it makes a strong case for a point that is central to Aristotle’s broader critique of Platonist views: if we posit distinct substances to explain the properties of sensible objects, we become committed to an embarrassingly prodigious ontology. There is also something to be learned from the argument about Aristotle’s own criteria for a theory of mathematical objects. I hope to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical Substances in Aristotle’s Metaphysics B.5: Aporia 12 Revisited.Emily Katz - 2018 - Archiv für Geschichte der Philosophie 100 (2):113-145.
    : Metaphysics B considers two sets of views that hypostatize mathematicals. Aristotle discusses the first in his B.2 treatment of aporia 5, and the second in his B.5 treatment of aporia 12. The former has attracted considerable attention; the latter has not. I show that aporia 12 is more significant than the literature suggests, and specifically that it is directly addressed in M.2 – an indication of its importance. There is an immediate problem: Aristotle spends most of M.2 refuting the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Platonist Absurd Accumulation of Geometrical Objects: Metaphysics Μ.2.José Edgar González-Varela - 2020 - Phronesis 65 (1):76-115.
    In the first argument of Metaphysics Μ.2 against the Platonist introduction of separate mathematical objects, Aristotle purports to show that positing separate geometrical objects to explain geometrical facts generates an ‘absurd accumulation’ of geometrical objects. Interpretations of the argument have varied widely. I distinguish between two types of interpretation, corrective and non-corrective interpretations. Here I defend a new, and more systematic, non-corrective interpretation that takes the argument as a serious and very interesting challenge to the Platonist.
    Download  
     
    Export citation  
     
    Bookmark