Switch to: References

Add citations

You must login to add citations.
  1. An “I” for an I: Singular terms, uniqueness, and reference.Stewart Shapiro - 2012 - Review of Symbolic Logic 5 (3):380-415.
    There is an interesting logical/semantic issue with some mathematical languages and theories. In the language of (pure) complex analysis, the two square roots of i’ manage to pick out a unique object? This is perhaps the most prominent example of the phenomenon, but there are some others. The issue is related to matters concerning the use of definite descriptions and singular pronouns, such as donkey anaphora and the problem of indistinguishable participants. Taking a cue from some work in linguistics and (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Frege's Approach to the Foundations of Analysis (1874–1903).Matthias Schirn - 2013 - History and Philosophy of Logic 34 (3):266-292.
    The concept of quantity (Größe) plays a key role in Frege's theory of real numbers. Typically enough, he refers to this theory as ?theory of quantity? (?Größenlehre?) in the second volume of his opus magnum Grundgesetze der Arithmetik (Frege 1903). In this essay, I deal, in a critical way, with Frege's treatment of the concept of quantity and his approach to analysis from the beginning of his academic career until Frege 1903. I begin with a few introductory remarks. In Section (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Book Review: Gottlob Frege, Basic Laws of Arithmetic. [REVIEW]Kevin C. Klement - 2016 - Studia Logica 104 (1):175-180.
    Review of Basic Laws of Arithmetic, ed. and trans. by P. Ebert and M. Rossberg (Oxford 2013).
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege’s Constraint and the Nature of Frege’s Foundational Program.Marco Panza & Andrea Sereni - 2019 - Review of Symbolic Logic 12 (1):97-143.
    Recent discussions on Fregean and neo-Fregean foundations for arithmetic and real analysis pay much attention to what is called either ‘Application Constraint’ ($AC$) or ‘Frege Constraint’ ($FC$), the requirement that a mathematical theory be so outlined that it immediately allows explaining for its applicability. We distinguish between two constraints, which we, respectively, denote by the latter of these two names, by showing how$AC$generalizes Frege’s views while$FC$comes closer to his original conceptions. Different authors diverge on the interpretation of$FC$and on whether it (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Frege’s Logicism and the Neo-Fregean Project.Matthias Schirn - 2014 - Axiomathes 24 (2):207-243.
    Neo-logicism is, not least in the light of Frege’s logicist programme, an important topic in the current philosophy of mathematics. In this essay, I critically discuss a number of issues that I consider to be relevant for both Frege’s logicism and neo-logicism. I begin with a brief introduction into Wright’s neo-Fregean project and mention the main objections that he faces. In Sect. 2, I discuss the Julius Caesar problem and its possible Fregean and neo-Fregean solution. In Sect. 3, I raise (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Identity and the Cognitive Value of Logical Equations in Frege’s Foundational Project.Matthias Schirn - 2023 - Notre Dame Journal of Formal Logic 64 (4):495-544.
    In this article, I first analyze and assess the epistemological and semantic status of canonical value-range equations in the formal language of Frege’s Grundgesetze der Arithmetik. I subsequently scrutinize the relation between (a) his informal, metalinguistic stipulation in Grundgesetze I, Section 3, and (b) its formal counterpart, which is Basic Law V. One point I argue for is that the stipulation in Section 3 was designed not only to fix the references of value-range names, but that it was probably also (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Reals by Abstraction.Bob Hale - 2000 - Philosophia Mathematica 8 (2):100--123.
    On the neo-Fregean approach to the foundations of mathematics, elementary arithmetic is analytic in the sense that the addition of a principle wliich may be held to IMJ explanatory of the concept of cardinal number to a suitable second-order logical basis suffices for the derivation of its basic laws. This principle, now commonly called Hume's principle, is an example of a Fregean abstraction principle. In this paper, I assume the correctness of the neo-Fregean position on elementary aritlunetic and seek to (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Reflections on Frege’s Theory of Real Numbers†.Peter Roeper - 2020 - Philosophia Mathematica 28 (2):236-257.
    ABSTRACT Although Frege’s theory of real numbers in Grundgesetze der Arithmetik, Vol. II, is incomplete, it is possible to provide a logicist justification for the approach he is taking and to construct a plausible completion of his account by an extrapolation which parallels his theory of cardinal numbers.
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege and his groups.Tuomo Aho - 1998 - History and Philosophy of Logic 19 (3):137-151.
    Frege's docent's dissertation Rechnungsmethoden, die sich auf eine Erweiterung des Grössenbegriffes gründen(1874) contains indications of a bold attempt to extend arithmetic. According to it, arithmetic means the science of magnitude, and magnitude must be understood structurally without intuitive support. The main thing is insight into the formal structure of the operation of ?addition?. It turns out that a general ?magnitude domain? coincides with a (commutative) group. This is an interesting connection with simultaneous developments in abstract algebra. As his main application, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Determinacy of abstract objects: The platonist's dilemma.Peter Simons - 1989 - Topoi 8 (1):35-42.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The state of the economy: Neo-logicism and inflation.Rov T. Cook - 2002 - Philosophia Mathematica 10 (1):43-66.
    In this paper I examine the prospects for a successful neo–logicist reconstruction of the real numbers, focusing on Bob Hale's use of a cut-abstraction principle. There is a serious problem plaguing Hale's project. Natural generalizations of this principle imply that there are far more objects than one would expect from a position that stresses its epistemological conservativeness. In other words, the sort of abstraction needed to obtain a theory of the reals is rampantly inflationary. I also indicate briefly why this (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The logical system of Frege's grundgestze: A rational reconstruction.Méven Cadet & Marco Panza - 2015 - Manuscrito 38 (1):5-94.
    This paper aims at clarifying the nature of Frege's system of logic, as presented in the first volume of the Grundgesetze. We undertake a rational reconstruction of this system, by distinguishing its propositional and predicate fragments. This allows us to emphasise the differences and similarities between this system and a modern system of classical second-order logic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frege’s Theory of Real Numbers: A Consistent Rendering.Francesca Boccuni & Marco Panza - forthcoming - Review of Symbolic Logic:1-44.
    Frege's definition of the real numbers, as envisaged in the second volume of Grundgesetze der Arithmetik, is fatally flawed by the inconsistency of Frege's ill-fated Basic Law V. We restate Frege's definition in a consistent logical framework and investigate whether it can provide a logical foundation of real analysis. Our conclusion will deem it doubtful that such a foundation along the lines of Frege's own indications is possible at all.
    Download  
     
    Export citation  
     
    Bookmark   7 citations