Citations of:
Add citations
You must login to add citations.
|
|
Environmental heterogeneity is invoked as a key explanatory factor in the adaptive evolution of a surprisingly wide range of phenomena. This article aims to analyze this explanatory scheme of categorizing traits or properties as adaptations to environmental heterogeneity. First it is suggested that this scheme can be understood as a reaction to how heterogeneity adaptations were discounted or ignored in the modern synthesis. Then a positive account is proposed, distinguishing between two broad categories of adaptation to environmental heterogeneity: properties selected (...) |
|
Evolutionary developmental biology is a rapidly growing discipline whose ambition is to address questions that are of relevance to both evolutionary biology and developmental biology. This field has been increasingly progressing as a new and independent comparative science. However, we argue that evo-devo’s comparative approach is challenged by several metaphysical, methodological and socio-disciplinary issues related to the foundation of heuristic functions of model organisms and the possible criteria to be adopted for their selection. In addition, new tools have to be (...) |
|
|
|
|
|
Recent work on inheritance systems can be divided into inclusive conceptions, according to which genetic and non-genetic inheritance are both involved in the development and transmission of nearly all animal behavioral traits, and more demanding conceptions of what it takes for non-genetic resources involved in development to qualify as a distinct inheritance system. It might be thought that, if a more stringent conception is adopted, homologies could not subsist across two distinct inheritance systems. Indeed, it is commonly assumed that homology (...) |
|
Although classical evolutionary theory, i.e., population genetics and the Modern Synthesis, was already implicitly ‘gene-centred’, the organism was, in practice, still generally regarded as the individual unit of which a population is composed. The gene-centred approach to evolution only reached a logical conclusion with the advent of the gene-selectionist or gene’s eye view in the 1960s and 1970s. Whereas classical evolutionary theory can only work with fitness differences between individual organisms, gene-selectionism is capable of working with fitness differences among genes (...) |
|
On the basis of findings from developmental biology, some researchers have argued that evolutionary theory needs to be significantly updated. Advocates of such a “developmental update” have, among other things, suggested that we need to re-conceptualize units of selection, that we should expand our view of inheritance to include environmental as well as genetic and epigenetic factors, that we should think of organisms and their environment as involved in reciprocal causation, and that we should reevaluate the rates of evolutionary change. (...) |
|
Adaptation by means of natural selection depends on the ability of populations to maintain variation in heritable traits. According to the Modern Synthesis this variation is sustained by mutations and genetic drift. Epigenetics, evodevo, niche construction and cultural factors have more recently been shown to contribute to heritable variation, however, leading an increasing number of biologists to call for an extended view of speciation and evolution. An additional common feature across the animal kingdom is learning, defined as the ability to (...) |
|
Scientific disputes about how often different processes or patterns occur are relative frequency controversies. These controversies occur across the sciences. In some areas—especially biology—they are even the dominant mode of dispute. Yet they depart from the standard picture of what a scientific controversy is like. In fact, standard philosophical accounts of scientific controversies suggest that relative frequency controversies are irrational or lacking in epistemic value. This is because standard philosophical accounts of scientific controversies often assume that in order to be (...) |
|
It is clear throughout Cognitive Gadgets Heyes believes the development of cognitive capacities results from the interaction of genes and experience. However, she opposes cognitive instincts theorists to her own view that uniquely human capacities are cognitive gadgets. Instinct theorists believe that cognitive capacities are substantially produced by selection, with the environment playing a triggering role. Heyes’s position is that humans have similar general learning capacities to those present across taxa, and that sophisticated human cognition is substantially created by our (...) |
|
The concept of adaptation is employed in many fields such as biology, psychology, cognitive sciences, robotics, social sciences, even literacy and art,1 and its meaning varies quite evidently according to the particular research context in which it is applied. We expect to find a particularly rich catalogue of meanings within evolutionary biology, where adaptation has held a particularly central role since Darwin’s The Origin of Species (1859) throughout important epistemological shifts and scientific findings that enriched and diversified the concept. Accordingly, (...) |
|
In this paper, I present an emerging explanatory framework about ageing and care. In particular, I focus on how, in contrast to most classical accounts of ageing, biomedicine today construes the ageing process as a modifiable trajectory. This framing turns ageing from a stage of inexorable decline into the focus of preventive strategies, harnessing the functional plasticity of the ageing organism. I illustrate this shift by focusing on studies of the demographic dynamics in human population, observations of ageing as an (...) |
|
I identify a controversial hypothesis in evolutionary biology called the plasticity-first hypothesis. I argue that the plasticity-first hypothesis is underdetermined and that the most popular means of studying the plasticity-first hypothesis are insufficient to confirm or disconfirm it. I offer a strategy for overcoming this problem. Researchers need to develop a richer middle range theory of plasticity-first evolution that allows them to identify distinctive empirical traces of the hypothesis. They can then use those traces to discriminate between rival explanations of (...) |
|
|
|
Four sequential, sub-processes are identified as the fundamental steps in the processing of signals by big-brained animals. These are, Detection of the signal, its Representation in correlated sensory brain structure, the Interpretation of the signal in another part of the brain and the Expression of the receiver’s response. We label this four-step spatiotemporal process DRIE. We support the view that when the context within which such signals are produced and received is relatively constant, the DRIE process can be ultimately assimilated (...) |