Switch to: References

Add citations

You must login to add citations.
  1. Time, quantum mechanics, and probability.Simon Saunders - 1998 - Synthese 114 (3):373-404.
    A variety of ideas arising in decoherence theory, and in the ongoing debate over Everett's relative-state theory, can be linked to issues in relativity theory and the philosophy of time, specifically the relational theory of tense and of identity over time. These have been systematically presented in companion papers (Saunders 1995; 1996a); in what follows we shall consider the same circle of ideas, but specifically in relation to the interpretation of probability, and its identification with relations in the Hilbert Space (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • David Hilbert and the axiomatization of physics (1894–1905).Leo Corry - 1997 - Archive for History of Exact Sciences 51 (2):83-198.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Philosophy of statistical mechanics.Lawrence Sklar - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Origins of the logical theory of probability: Von Kries, Wittgenstein, Waismann.Michael Heidelberger - 2001 - International Studies in the Philosophy of Science 15 (2):177 – 188.
    The physiologist and neo-Kantian philosopher Johannes von Kries (1853-1928) wrote one of the most philosophically important works on the foundation of probability after P.S. Laplace and before the First World War, his Principien der Wohrscheinlich-keitsrechnung (1886, repr. 1927). In this book, von Kries developed a highly original interpretation of probability, which maintains it to be both logical and objectively physical. After presenting his approach I shall pursue the influence it had on Ludwig Wittgenstein and Friedrich Waismann. It seems that von (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Insuperable difficulties: Einstein's statistical road to molecular physics.Jos Uffink - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (1):36-70.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Poincaré, Poincaré Recurrence, and the H-Theorem: A Continued Reassessment of Boltzmannian Statistical Mechanics.Christopher Gregory Weaver - 2022 - International Journal of Modern Physics B 36 (23):2230005.
    In (Weaver 2021), I showed that Boltzmann’s H-theorem does not face a significant threat from the reversibility paradox. I argue that my defense of the H-theorem against that paradox can be used yet again for the purposes of resolving the recurrence paradox without having to endorse heavy-duty statistical assumptions outside of the hypothesis of molecular chaos. As in (Weaver 2021), lessons from the history and foundations of physics reveal precisely how such resolution is achieved.
    Download  
     
    Export citation  
     
    Bookmark  
  • Did the Universe Have a Chance?C. D. McCoy - 2019 - Philosophy of Science 86 (5):1262-1272.
    In a world awash in statistical patterns, should we conclude that the universe’s evolution or genesis is somehow subject to chance? I draw attention to alternatives that must be acknowledged if we are to have an adequate assessment of what chance the universe might have had.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mahdollisuus, välttämättömyys ja luodut ikuiset totuudet Descartesin filosofiassa.Forsman Jan - 2016 - In Ilkka Niiniluoto, Tuomas Tahko & Teemu Toppinen (eds.), Mahdollisuus. Helsinki: Philosophical Society of Finland. pp. 120-129.
    Tässä artikkelissa käsittelen Descartesin ikuisten totuuksien välttämättömyyteen liittyvää ongelmaa. Teoksessa Mietiskelyjä ensimmäisestä filosofiasta (1641–1642) Descartes nostaa esiin käsitteen ikuisista totuuksista, käyttäen esimerkkinään kolmiota. Kolmion muuttumattomaan ja ikuiseen luontoon kuuluu esimerkiksi, että sen kolme kulmaa ovat yhteenlaskettuna 180°. Se on totta kolmiosta, vaikka yhtään yksittäistä kolmiota ei olisi koskaan ollutkaan olemassa. Eräät ajattelemieni asioiden piirteet ovat siis Descartesin mukaan ajattelustani riippumattomia. Ikuisia totuuksia ovat ainakin matemaattiset ja geometriset tosiseikat sekä ristiriidan laki. Samoin Descartesin kuuluisa lause “ajattelen, siis olen” lukeutuu ikuisten totuuksien (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Probability in 1919/20: the von Mises-Pólya-Controversy.Reinhard Siegmund-Schultze - 2006 - Archive for History of Exact Sciences 60 (5):431-515.
    The correspondence between Richard von Mises and George Pólya of 1919/20 contains reflections on two well-known articles by von Mises on the foundations of probability in the Mathematische Zeitschrift of 1919, and one paper from the Physikalische Zeitschrift of 1918. The topics touched on in the correspondence are: the proof of the central limit theorem of probability theory, von Mises' notion of randomness, and a statistical criterion for integer-valuedness of physical data. The investigation will hint at both the fruitfulness and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Two Mathematical Approaches to Random Fluctuations.Chen-Pang Yeang - 2016 - Perspectives on Science 24 (1):45-72.
    Randomness, uncertainty, and lack of regularity had concerned savants for a long time. As early as the seventeenth century, Blaise Pascal conceived the arithmetic of chance for gambling. At the height of positional astronomy, mathematicians developed a theory of errors to cope with random deviations in astronomical observations. In the nineteenth century, pioneers of statistics employed probabilistic calculus to define “normal” and “pathological” in the distribution of social characters, while physicists devised the statistical-mechanical interpretation of thermodynamic effects. By the end (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Indifference Principle, its Paradoxes and Kolmogorov's Probability Space.Dan D. November - 2019 - Phisciarchive.
    The Indifference Principle, its Paradoxes and Kolmogorov's Probability Space.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wahrscheinlichkeitsrechnung im Spannungsfeld von Maß- und Häufigkeitstheorie—Leben und werk des “Deutschen” Mathematikers Erhard Tornier (1894–1982). [REVIEW]Thomas Hochkirchen - 1998 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 6 (1):22-41.
    The axiomatization of probability theory by the national socialistic German mathematician E. Tornier will be embedded between measure theoretic and frequentist approaches to the problem and compared with Tomiers ideological claims. New details of his biography will be given.
    Download  
     
    Export citation  
     
    Bookmark