Switch to: References

Add citations

You must login to add citations.
  1. Interpreting the quantum mechanics of cosmology.David Wallace - forthcoming - In A. Ijjas & B. Loewer (eds.), Philosophy of Cosmology: an Introduction. Oxford University Press.
    Quantum theory plays an increasingly significant role in contemporary early-universe cosmology, most notably in the inflationary origins of the fluctuation spectrum of the microwave background radiation. I consider the two main strategies for interpreting standard quantum mechanics in the light of cosmology. I argue that the conceptual difficulties of the approaches based around an irreducible role for measurement - already very severe - become intolerable in a cosmological context, whereas the approach based around Everett's original idea of treating quantum systems (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Everett's “Many-Worlds” proposal.Brett Maynard Bevers - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (1):3-12.
    Hugh Everett III proposed that a quantum measurement can be treated as an interaction that correlates microscopic and macroscopic systems—particularly when the experimenter herself is included among those macroscopic systems. It has been difficult, however, to determine precisely what this proposal amounts to. Almost without exception, commentators have held that there are ambiguities in Everett’s theory of measurement that result from significant—even embarrassing—omissions. In the present paper, we resist the conclusion that Everett’s proposal is incomplete, and we develop a close (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Worlds in the Everett interpretation.David Wallace - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):637-661.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Quantum Sleeping Beauty.Peter J. Lewis - 2007 - Analysis 67 (1):59-65.
    The Sleeping Beauty paradox in epistemology and the many-worlds interpretation of quantum mechanics both raise problems concerning subjective probability assignments. Furthermore, there are striking parallels between the two cases; in both cases personal experience has a branching structure, and in both cases the agent loses herself among the branches. However, the treatment of probability is very different in the two cases, for no good reason that I can see. Suppose, then, that we adopt the same treatment of probability in each (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Quantum mechanics as a deterministic theory of a continuum of worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics and of Everett’s (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Everett Interpretation.David Wallace - unknown
    The Everett interpretation of quantum mechanics - better known as the Many-Worlds Theory - has had a rather uneven reception. Mainstream philosophers have scarcely heard of it, save as science fiction. In philosophy of physics it is well known but has historically been fairly widely rejected. Among physicists, it is taken very seriously indeed, arguably tied for first place in popularity with more traditional operationalist views of quantum mechanics. In this article, I provide a fairly short and self-contained introduction to (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Causal Decision Theory and EPR correlations.Arif Ahmed & Adam Caulton - 2014 - Synthese 191 (18):4315-4352.
    The paper argues that on three out of eight possible hypotheses about the EPR experiment we can construct novel and realistic decision problems on which (a) Causal Decision Theory and Evidential Decision Theory conflict (b) Causal Decision Theory and the EPR statistics conflict. We infer that anyone who fully accepts any of these three hypotheses has strong reasons to reject Causal Decision Theory. Finally, we extend the original construction to show that anyone who gives any of the three hypotheses any (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Many worlds: decoherent or incoherent?Karim P. Y. Thébault & Richard Dawid - 2015 - Synthese 192 (5):1559-1580.
    We claim that, as it stands, the Deutsch–Wallace–Everett approach to quantum theory is conceptually incoherent. This charge is based upon the approach’s reliance upon decoherence arguments that conflict with its own fundamental precepts regarding probabilistic reasoning in two respects. This conceptual conflict obtains even if the decoherence arguments deployed are aimed merely towards the establishment of certain ‘emergent’ or ‘robust’ structures within the wave function: To be relevant to physical science notions such as robustness must be empirically grounded, and, on (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Objective Probability in Everettian Quantum Mechanics.Alastair Wilson - 2013 - British Journal for the Philosophy of Science 64 (4):709-737.
    David Wallace has given a decision-theoretic argument for the Born Rule in the context of Everettian quantum mechanics. This approach promises to resolve some long-standing problems with probability in EQM, but it has faced plenty of resistance. One kind of objection charges that the requisite notion of decision-theoretic uncertainty is unavailable in the Everettian picture, so that the argument cannot gain any traction; another kind of objection grants the proof’s applicability and targets the premises. In this article I propose some (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Informational branching universe.Pierre Uzan - 2010 - Foundations of Science 15 (1):1-28.
    This paper suggests an epistemic interpretation of Belnap’s branching space-times theory based on Everett’s relative state formulation of the measurement operation in quantum mechanics. The informational branching models of the universe are evolving structures defined from a partial ordering relation on the set of memory states of the impersonal observer. The totally ordered set of their information contents defines a linear “time” scale to which the decoherent alternative histories of the informational universe can be referred—which is quite necessary for assigning (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Unravelling the Tangled Web: Continuity, Internalism, Non-Uniqueness and Self-Locating Beliefs.Christopher J. G. Meacham - 2007 - In Tamar Szabó Gendler & John Hawthorne (eds.), Oxford Studies in Epistemology: Volume 3. Oxford University Press UK. pp. 86.
    A number of cases involving self-locating beliefs have been discussed in the Bayesian literature. I suggest that many of these cases, such as the sleeping beauty case, are entangled with issues that are independent of self-locating beliefs per se. In light of this, I propose a division of labor: we should address each of these issues separately before we try to provide a comprehensive account of belief updating. By way of example, I sketch some ways of extending Bayesianism in order (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)Quantum probability and many worlds.Meir Hemmo - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):333-350.
    We discuss the meaning of probabilities in the many worlds interpretation of quantum mechanics. We start by presenting very briefly the many worlds theory, how the problem of probability arises, and some unsuccessful attempts to solve it in the past. Then we criticize a recent attempt by Deutsch to derive the quantum mechanical probabilities from the nonprobabilistic parts of quantum mechanics and classical decision theory. We further argue that the Born probability does not make sense even as an additional probability (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • A formal proof of the born rule from decision-theoretic assumptions [aka: How to Prove the Born Rule].David Wallace - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    I develop the decision-theoretic approach to quantum probability, originally proposed by David Deutsch, into a mathematically rigorous proof of the Born rule in (Everett-interpreted) quantum mechanics. I sketch the argument informally, then prove it formally, and lastly consider a number of proposed ``counter-examples'' to show exactly which premises of the argument they violate. (This is a preliminary version of a chapter to appear --- under the title ``How to prove the Born Rule'' --- in Saunders, Barrett, Kent and Wallace, "Many (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Confirmation in a Branching World: The Everett Interpretation and Sleeping Beauty.Darren Bradley - 2011 - British Journal for the Philosophy of Science 62 (2):323-342.
    Sometimes we learn what the world is like, and sometimes we learn where in the world we are. Are there any interesting differences between the two kinds of cases? The main aim of this article is to argue that learning where we are in the world brings into view the same kind of observation selection effects that operate when sampling from a population. I will first explain what observation selection effects are ( Section 1 ) and how they are relevant (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Quantum probability and decision theory, revisited [2002 online-only paper].David Wallace - 2002
    An extended analysis is given of the program, originally suggested by Deutsch, of solving the probability problem in the Everett interpretation by means of decision theory. Deutsch's own proof is discussed, and alternatives are presented which are based upon different decision theories and upon Gleason's Theorem. It is argued that decision theory gives Everettians most or all of what they need from `probability'. Contact is made with Lewis's Principal Principle linking subjective credence with objective chance: an Everettian Principal Principle is (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • The quantum measurement problem: State of play.David Wallace - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • A thirder and an Everettian: A reply to Lewis's 'Quantum Sleeping Beauty'.David Papineau & Víctor Durà-Vilà - 2009 - Analysis 69 (1):78-86.
    Since the publication of Elga's seminal paper in 2000, the Sleeping Beauty paradox has been the source of much discussion, particularly in this journal. Over the past few decades the Everettian interpretation of quantum mechanics 1 has also been much debated. There is an interesting connection between the way these two topics raise issues about subjective probability assignments.This connection is often alluded to, but as far as we know Peter J. Lewis's ‘Quantum Sleeping Beauty’ is the first attempt to examine (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Einstein's untimely burial.Wayne C. Myrvold - unknown
    There seems to be a growing consensus that any interpretation of quantum mechanics other than an instrumentalist interpretation will have to abandon the requirement of Lorentz invariance, at least at the fundamental level, preserving at best Lorentz invariance of phenomena. In particular, it is often said that the collapse postulate is incompatible with the demands of relativity. It is the purpose of this paper to argue that such a conclusion is premature, and to defend the view that a covariant account (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Two dogmas about quantum mechanics.Jeffrey Bub & Itamar Pitowsky - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    We argue that the intractable part of the measurement problem -- the 'big' measurement problem -- is a pseudo-problem that depends for its legitimacy on the acceptance of two dogmas. The first dogma is John Bell's assertion that measurement should never be introduced as a primitive process in a fundamental mechanical theory like classical or quantum mechanics, but should always be open to a complete analysis, in principle, of how the individual outcomes come about dynamically. The second dogma is the (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Four Problems about Self-Locating Belief.Darren Bradley - 2012 - Philosophical Review 121 (2):149-177.
    This article defends the Doomsday Argument, the Halfer Position in Sleeping Beauty, the Fine-Tuning Argument, and the applicability of Bayesian confirmation theory to the Everett interpretation of quantum mechanics. It will argue that all four problems have the same structure, and it gives a unified treatment that uses simple models of the cases and no controversial assumptions about confirmation or self-locating evidence. The article will argue that the troublesome feature of all these cases is not self-location but selection effects.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Epistemology quantized: Circumstances in which we should come to believe in the Everett interpretation.David Wallace - 2006 - British Journal for the Philosophy of Science 57 (4):655-689.
    I consider exactly what is involved in a solution to the probability problem of the Everett interpretation, in the light of recent work on applying considerations from decision theory to that problem. I suggest an overall framework for understanding probability in a physical theory, and conclude that this framework, when applied to the Everett interpretation, yields the result that that interpretation satisfactorily solves the measurement problem. Introduction What is probability? 2.1 Objective probability and the Principal Principle 2.2 Three ways of (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • The grammar of teleportation.Christopher Gordon Timpson - 2006 - British Journal for the Philosophy of Science 57 (3):587-621.
    Whilst a straightforward consequence of the formalism of non-relativistic quantum mechanics, the phenomenon of quantum teleportation has given rise to considerable puzzlement. In this paper, the teleportation protocol is reviewed and these puzzles dispelled. It is suggested that they arise from two primary sources: (1) the familiar error of hypostatizing an abstract noun (in this case, ‘information’) and (2) failure to differentiate interpretation dependent from interpretation independent features of quantum mechanics. A subsidiary source of error, the simulation fallacy, is also (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Identity and probability in Everett's multiverse.P. Tappenden - 2000 - British Journal for the Philosophy of Science 51 (1):99-114.
    There are currently several versions of Everett's relative state interpretation of quantum mechanics, responding to a number of perceived problems for the original proposal. One of those problems is whether Everett's idea is in accord with the standard 'probabilistic' interpretation implicit in the Born rule. I argue in defence of what appears to be Everett's original view on this. The contribution I aim to make is a more complete discussion of the central issues of the identity of objects and observers (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Probability and nonlocality in many minds interpretations of quantum mechanics.Meir Hemmo & Itamar Pitowsky - 2003 - British Journal for the Philosophy of Science 54 (2):225-243.
    We argue that certain types of many minds (and many worlds) interpretations of quantum mechanics, e.g. Lockwood ([1996a]), Deutsch ([1985]) do not provide a coherent interpretation of the quantum mechanical probabilistic algorithm. By contrast, in Albert and Loewer's ([1988]) version of the many minds interpretation, there is a coherent interpretation of the quantum mechanical probabilities. We consider Albert and Loewer's probability interpretation in the context of Bell-type and GHZ-type states and argue that it implies a certain (weak) form of nonlocality. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Epistemic–Pragmatist Interpretations of Quantum Mechanics: A Comparative Assessment.Ali Barzegar & Daniele Oriti - 2024 - Foundations of Physics 54 (5):1-34.
    In this paper, we investigate similarities and differences between the main neo-Copenhagen (or “epistemic–pragmatist”) interpretations of quantum mechanics, here identified as those defined by the rejection of an ontological nature of the quantum states and the simultaneous avoidance of hidden variables, while maintaining the quantum formalism unchanged. We argue that there is a single general interpretive framework in which the core claims that the various interpretations in the class are committed to, and which they emphasize to varying degrees, can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Finite Frequentism Explains Quantum Probability.Simon Saunders - forthcoming - British Journal for the Philosophy of Science.
    I show that frequentism, as an explanation of probability in classical statistical mechanics, can be extended in a natural way to a decoherent quantum history space, the analogue of a classical phase space. The result is a form of finite frequentism, in which Gibbs’ concept of an infinite ensemble of gases is replaced by the quantum state expressed as a superposition of a finite number of decohering microstates. It is a form of finite and actual frequentism (as opposed to hypothetical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lagrangian possibilities.Alexandre Guay & Quentin Ruyant - 2024 - Synthese 203 (4):1-22.
    Natural modalities are often analysed from an abstract point of view where they are associated with putative laws of nature. However, the way possibilities are represented in physics is more complex. Lagrangian mechanics, for instance, involves two different layers of modalities: kinematical and dynamical possibilities. This paper examines the status of these two layers, both in the classical and quantum case. The quantum case is particularly problematic: we identify four possible interpretive options. The upshot is that a close inspection of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fundamentality and Levels in Everettian Quantum Mechanics.Alastair Wilson - 2022 - In Valia Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy. Cham: Springer.
    Distinctions in fundamentality between different levels of description are central to the viability of contemporary decoherence-based Everettian quantum mechanics (EQM). This approach to quantum theory characteristically combines a determinate fundamental reality (one universal wave function) with an indeterminate emergent reality (multiple decoherent worlds). In this chapter I explore how the Everettian appeal to fundamentality and emergence can be understood within existing metaphysical frameworks, identify grounding and concept fundamentality as promising theoretical tools, and use them to characterize a system of explanatory (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Everett Interpretation: Probability.Simon Saunders - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    The Everett interpretation of quantum mechanics divides naturally into two parts: first, the interpretation of the structure of the quantum state, in terms of branching, and second, the interpretation of this branching structure in terms of probability. This is the second of two reviews of the Everett interpretation, and focuses on probability. Branching processes are identified as chance processes, and the squares of branch amplitudes are chances. Since branching is emergent, physical probability is emergent as well.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Relativistic Implications for Physical Copies of Conscious States.Andrew Knight - manuscript
    The possibility of algorithmic consciousness depends on the assumption that conscious states can be copied or repeated by sufficiently duplicating their underlying physical states, leading to a variety of paradoxes, including the problems of duplication, teleportation, simulation, self-location, the Boltzmann brain, and Wigner’s Friend. In an effort to further elucidate the physical nature of consciousness, I challenge these assumptions by analyzing the implications of special relativity on evolutions of identical copies of a mental state, particularly the divergence of these evolutions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Many Worlds: an introduction.Simon Saunders - unknown
    This is a self-contained introduction to the Everett interpretation of quantum mechanics. It is the introductory chapter of Many Worlds? Everett, quantum theory, and reality, S. Saunders, J. Barrett, A. Kent, and D. Wallace, Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Quantum Worlds.Jeffrey A. Barrett - 2016 - Principia: An International Journal of Epistemology 20 (1):45-60.
    Because of the conceptual difficulties it faces, quantum mechanics provides a salient example of how alternative metaphysical commitments may clarify our understanding of a physical theory and the explanations it provides. Here we will consider how postulating alternative quantum worlds in the context of Hugh Everett III’s pure wave mechanics may serve to explain determinate measurement records and the standard quantum statistics. We will focus on the properties of such worlds, then briefly consider other metaphysical options available for interpreting pure (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Multiplicity in Everett׳s interpretation of quantum mechanics.Louis Marchildon - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):274-284.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • In Defence of Naiveté: The Conceptual Status of Lagrangian Quantum Field Theory.David Wallace - 2006 - Synthese 151 (1):33-80.
    I analyse the conceptual and mathematical foundations of Lagrangian quantum field theory (QFT) (that is, the ‘naive’ (QFT) used in mainstream physics, as opposed to algebraic quantum field theory). The objective is to see whether Lagrangian (QFT) has a sufficiently firm conceptual and mathematical basis to be a legitimate object of foundational study, or whether it is too ill-defined. The analysis covers renormalisation and infinities, inequivalent representations, and the concept of localised states; the conclusion is that Lagrangian QFT (at least (...)
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • (1 other version)Quantum probability and many worlds.Meir Hemmo & Itamar Pitowsky - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):333-350.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Quantum Information Theory and the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  • The Quantum Doomsday Argument.Alastair Wilson - 2017 - British Journal for the Philosophy of Science 68 (2).
    If the most familiar overlapping interpretation of Everettian quantum mechanics is correct, then each of us is constantly splitting into multiple people. This consequence gives rise to the quantum doomsday argument, which threatens to draw crippling epistemic consequences from EQM. However, a diverging interpretation of EQM undermines the quantum doomsday argument completely. This appears to tell in favour of the diverging interpretation. But it is surprising that a metaphysical question that is apparently underdetermined by the physics should be settled by (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Belief Update across Fission.Wolfgang Schwarz - 2015 - British Journal for the Philosophy of Science 66 (3):659-682.
    When an agent undergoes fission, how should the beliefs of the fission results relate to the pre-fission beliefs? This question is important for the Everett interpretation of quantum mechanics, but it is of independent philosophical interest. Among other things, fission scenarios demonstrate that ‘self-locating’ information can affect the probability of uncentred propositions even if an agent has no essentially self-locating uncertainty. I present a general update rule for centred beliefs that gives sensible verdicts in cases of fission, without relying on (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Everettian quantum mechanics without branching time.Alastair Wilson - 2012 - Synthese 188 (1):67-84.
    In this paper I assess the prospects for combining contemporary Everettian quantum mechanics (EQM) with branching-time semantics in the tradition of Kripke, Prior, Thomason and Belnap. I begin by outlining the salient features of ‘decoherence-based’ EQM, and of the ‘consistent histories’ formalism that is particularly apt for conceptual discussions in EQM. This formalism permits of both ‘branching worlds’ and ‘parallel worlds’ interpretations; the metaphysics of EQM is in this sense underdetermined by the physics. A prominent argument due to Lewis (On (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Typicality and Notions of Probability in Physics.Sheldon Goldstein - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 59--71.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Derivation of the born rule from operational assumptions.Simon Saunders - manuscript
    The Born rule is derived from operational assumptions, together with assumptions of quantum mechanics that concern only the deterministic development of the state. Unlike Gleason’s theorem, the argument applies even if probabilities are de…ned for only a single resolution of the identity, so it applies to a variety of foundational approaches to quantum mechanics. It also provides a probability rule for state spaces that are not Hilbert spaces.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Chance and time.Amit Hagar - 2004 - Dissertation, Ubc
    One of the recurrent problems in the foundations of physics is to explain why we rarely observe certain phenomena that are allowed by our theories and laws. In thermodynamics, for example, the spontaneous approach towards equilibrium is ubiquitous yet the time-reversal-invariant laws that presumably govern thermal behaviour in the microscopic level equally allow spontaneous departure from equilibrium to occur. Why are the former processes frequently observed while the latter are almost never reported? Another example comes from quantum mechanics where the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Implications of quantum theory in the foundations of statistical mechanics.David Wallace - manuscript
    An investigation is made into how the foundations of statistical mechanics are affected once we treat classical mechanics as an approximation to quantum mechanics in certain domains rather than as a theory in its own right; this is necessary if we are to understand statistical-mechanical systems in our own world. Relevant structural and dynamical differences are identified between classical and quantum mechanics (partly through analysis of technical work on quantum chaos by other authors). These imply that quantum mechanics significantly affects (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically deflationary account of the nature of quantum information. (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Understanding Deutsch's probability in a deterministic universe.Hilary Greaves - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):423-456.
    Difficulties over probability have often been considered fatal to the Everett interpretation of quantum mechanics. Here I argue that the Everettian can have everything she needs from `probability' without recourse to indeterminism, ignorance, primitive identity over time or subjective uncertainty: all she needs is a particular *rationality principle*. The decision-theoretic approach recently developed by Deutsch and Wallace claims to provide just such a principle. But, according to Wallace, decision theory is itself applicable only if the correct attitude to a future (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • Modal Interpretations of Quantum Mechanics and Relativity: A Reconsideration. [REVIEW]Joseph Berkovitz & Meir Hemmo - 2004 - Foundations of Physics 35 (3):373-397.
    Two of the main interpretative problems in quantum mechanics are the so-called measurement problem and the question of the compatibility of quantum mechanics with relativity theory. Modal interpretations of quantum mechanics were designed to solve both of these problems. They are no-collapse (typically) indeterministic interpretations of quantum mechanics that supplement the orthodox state description of physical systems by a set of possessed properties that is supposed to be rich enough to account for the classical-like behavior of macroscopic systems, but sufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Tense and indeterminateness.Simon Saunders - 2000 - Philosophy of Science 67 (3):611.
    Is tense real and objective? Can the fact that something is past, say, be wholly objective, consistent with special relativity? The answer is yes, but only so long as the distinction has no ontological ground. There is a closely related question. Is the contrast between the determinate and the indeterminate real and objective, consistent with relativity and quantum mechanics? The answer is again yes, but only if the contrast has no ontological ground. Various accounts of it are explored, according to (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Everettian quantum mechanics and the ghost of fission.Josh Quirke - forthcoming - Philosophical Quarterly.
    Arguments from fission cases, most notably made by Parfit, have historically been utilized in discussions of Everettian quantum mechanics (EQM) in an attempt to illuminate details of familiar accounts in which an agent ‘splits’. Whilst such imagery is often seen as an innocuous depiction of Everett's theory, it is in fact a poisoned chalice. I argue firstly that the fission case analogy is responsible for the conceptual foundations of probability arguments in EQM and secondly, following a number of disanalogies between (...)
    Download  
     
    Export citation  
     
    Bookmark