Switch to: References

Add citations

You must login to add citations.
  1. Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - 2021 - Erkenntnis 86 (5):1119-1137.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content to key (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Grounding and the indispensability argument.David Liggins - 2016 - Synthese 193 (2):531-548.
    There has been much discussion of the indispensability argument for the existence of mathematical objects. In this paper I reconsider the debate by using the notion of grounding, or non-causal dependence. First of all, I investigate what proponents of the indispensability argument should say about the grounding of relations between physical objects and mathematical ones. This reveals some resources which nominalists are entitled to use. Making use of these resources, I present a neglected but promising response to the indispensability argument—a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Metarepresentational Role of Mathematics in Scientific Explanations.Colin McCullough-Benner - 2022 - Philosophy of Science 89 (4):742-760.
    Several philosophers have argued that to capture the generality of certain scientific explanations, we must count mathematical facts among their explanantia. I argue that we can better understand these explanations by adopting a more nuanced stance toward mathematical representations, recognizing the role of mathematical representation schemata in representing highly abstract features of physical systems. It is by picking out these abstract but nonmathematical features that explanations appealing to mathematics achieve a high degree of generality. The result is a rich conception (...)
    Download  
     
    Export citation  
     
    Bookmark