Switch to: References

Add citations

You must login to add citations.
  1. Predicate Logics of Constructive Arithmetical Theories.Albert Visser - 2006 - Journal of Symbolic Logic 71 (4):1311 - 1326.
    In this paper, we show that the predicate logics of consistent extensions of Heyting's Arithmetic plus Church's Thesis with uniqueness condition are complete $\Pi _{2}^{0}$. Similarly, we show that the predicate logic of HA*, i.e. Heyting's Arithmetic plus the Completeness Principle (for HA*) is complete $\Pi _{2}^{0}$. These results extend the known results due to Valery Plisko. To prove the results we adapt Plisko's method to use Tennenbaum's Theorem to prove 'categoricity of interpretations' under certain assumptions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A survey of propositional realizability logic.Valery Plisko - 2009 - Bulletin of Symbolic Logic 15 (1):1-42.
    The study of propositional realizability logic was initiated in the 50th of the last century. Some interesting results were obtained in the 60-70th. but many important problems in this area are still open. Now interest to these problems from new generation of researchers is observed. This survey contains an exposition of the results on propositional realizability logic and corresponding techniques. Thus reading this paper can be the start point in exploring and development of constructive logic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Polynomially Bounded Recursive Realizability.Saeed Salehi - 2005 - Notre Dame Journal of Formal Logic 46 (4):407-417.
    A polynomially bounded recursive realizability, in which the recursive functions used in Kleene's realizability are restricted to polynomially bounded functions, is introduced. It is used to show that provably total functions of Ruitenburg's Basic Arithmetic are polynomially bounded (primitive) recursive functions. This sharpens our earlier result where those functions were proved to be primitive recursive. Also a polynomially bounded schema of Church's Thesis is shown to be polynomially bounded realizable. So the schema is consistent with Basic Arithmetic, whereas it is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Vaught's theorem on axiomatizability by a scheme.Albert Visser - 2012 - Bulletin of Symbolic Logic 18 (3):382-402.
    In his 1967 paper Vaught used an ingenious argument to show that every recursively enumerable first order theory that directly interprets the weak system VS of set theory is axiomatizable by a scheme. In this paper we establish a strengthening of Vaught's theorem by weakening the hypothesis of direct interpretability of VS to direct interpretability of the finitely axiomatized fragment VS2 of VS. This improvement significantly increases the scope of the original result, since VS is essentially undecidable, but VS2 has (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Provably total functions of Basic Arithemtic.Saeed Salehi - 2003 - Mathematical Logic Quarterly 49 (3):316.
    It is shown that all the provably total functions of Basic Arithmetic BA, a theory introduced by Ruitenburg based on Predicate Basic Calculus, are primitive recursive. Along the proof a new kind of primitive recursive realizability to which BA is sound, is introduced. This realizability is similar to Kleene's recursive realizability, except that recursive functions are restricted to primitive recursives.
    Download  
     
    Export citation  
     
    Bookmark   4 citations