Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Dag Prawitz on Proofs and Meaning.Heinrich Wansing (ed.) - 2014 - Cham, Switzerland: Springer.
    This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A sequent calculus isomorphic to gentzen’s natural deduction.Jan von Plato - 2011 - Review of Symbolic Logic 4 (1):43-53.
    Gentzens natural deduction. Thereby the appearance of the cuts in translation is explained.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Normal derivations and sequent derivations.Mirjana Borisavljevi - 2008 - Journal of Philosophical Logic 37 (6):521 - 548.
    The well-known picture that sequent derivations without cuts and normal derivations “are the same” will be changed. Sequent derivations without maximum cuts (i.e. special cuts which correspond to maximum segments from natural deduction) will be considered. It will be shown that the natural deduction image of a sequent derivation without maximum cuts is a normal derivation, and the sequent image of a normal derivation is a derivation without maximum cuts. The main consequence of that property will be that sequent derivations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gentzen’s “cut rule” and quantum measurement in terms of Hilbert arithmetic. Metaphor and understanding modeled formally.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal 14 (14):1-37.
    Hilbert arithmetic in a wide sense, including Hilbert arithmetic in a narrow sense consisting by two dual and anti-isometric Peano arithmetics, on the one hand, and the qubit Hilbert space (originating for the standard separable complex Hilbert space of quantum mechanics), on the other hand, allows for an arithmetic version of Gentzen’s cut elimination and quantum measurement to be described uniformy as two processes occurring accordingly in those two branches. A philosophical reflection also justifying that unity by quantum neo-Pythagoreanism links (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is the Meaning of Proofs?: A Fregean Distinction in Proof-Theoretic Semantics.Sara Ayhan - 2020 - Journal of Philosophical Logic 50 (3):571-591.
    The origins of proof-theoretic semantics lie in the question of what constitutes the meaning of the logical connectives and its response: the rules of inference that govern the use of the connective. However, what if we go a step further and ask about the meaning of a proof as a whole? In this paper we address this question and lay out a framework to distinguish sense and denotation of proofs. Two questions are central here. First of all, if we have (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Extracting BB′IW Inhabitants of Simple Types From Proofs in the Sequent Calculus $${LT_\to^{t}}$$ L T → t for Implicational Ticket Entailment.Katalin Bimbó & J. Michael Dunn - 2014 - Logica Universalis 8 (2):141-164.
    The decidability of the logic of pure ticket entailment means that the problem of inhabitation of simple types by combinators over the base { B, B′, I, W } is decidable too. Type-assignment systems are often formulated as natural deduction systems. However, our decision procedure for this logic, which we presented in earlier papers, relies on two sequent calculi and it does not yield directly a combinator for a theorem of ${T_\to}$. Here we describe an algorithm to extract an inhabitant (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Connection Between Cut Elimination and Normalization.Mirjana Borisavljević - 2006 - Archive for Mathematical Logic 45 (2):113-148.
    A new set of conversions for derivations in the system of sequents for intuitionistic predicate logic will be defined. These conversions will be some modifications of Zucker's conversions from the system of sequents from [11], which will have the following characteristics: (1) these conversions will be sufficient for transforming a derivation into a cut-free one, and (2) in the natural deduction the image of each of these conversions will be either in the set of conversions for normalization procedure, or an (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Full intuitionistic linear logic.Martin Hyland & Valeria de Paiva - 1993 - Annals of Pure and Applied Logic 64 (3):273-291.
    In this paper we give a brief treatment of a theory of proofs for a system of Full Intuitionistic Linear Logic. This system is distinct from Classical Linear Logic, but unlike the standard Intuitionistic Linear Logic of Girard and Lafont includes the multiplicative disjunction par. This connective does have an entirely natural interpretation in a variety of categorical models of Intuitionistic Linear Logic. The main proof-theoretic problem arises from the observation of Schellinx that cut elimination fails outright for an intuitive (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The subformula property of natural deduction derivations and analytic cuts.Mirjana Borisavljević - forthcoming - Logic Journal of the IGPL.
    In derivations of a sequent system, $\mathcal{L}\mathcal{J}$, and a natural deduction system, $\mathcal{N}\mathcal{J}$, the trails of formulae and the subformula property based on these trails will be defined. The derivations of $\mathcal{N}\mathcal{J}$ and $\mathcal{L}\mathcal{J}$ will be connected by the map $g$, and it will be proved the following: an $\mathcal{N}\mathcal{J}$-derivation is normal $\Longleftrightarrow $ it has the subformula property based on trails $\Longleftrightarrow $ its $g$-image in $\mathcal{L}\mathcal{J}$ is without maximum cuts $\Longrightarrow $ that $g$-image has the subformula property based (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Necessity of Thought.Cesare Cozzo - 2014 - In Heinrich Wansing (ed.), Dag Prawitz on Proofs and Meaning. Cham, Switzerland: Springer. pp. 101-20.
    The concept of “necessity of thought” plays a central role in Dag Prawitz’s essay “Logical Consequence from a Constructivist Point of View” (Prawitz 2005). The theme is later developed in various articles devoted to the notion of valid inference (Prawitz, 2009, forthcoming a, forthcoming b). In section 1 I explain how the notion of necessity of thought emerges from Prawitz’s analysis of logical consequence. I try to expound Prawitz’s views concerning the necessity of thought in sections 2, 3 and 4. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • An interpretation of classical proofs.Glen Helman - 1983 - Journal of Philosophical Logic 12 (1):39 - 71.
    Download  
     
    Export citation  
     
    Bookmark  
  • Normal deduction in the intuitionistic linear logic.G. Mints - 1998 - Archive for Mathematical Logic 37 (5-6):415-425.
    We describe a natural deduction system NDIL for the second order intuitionistic linear logic which admits normalization and has a subformula property. NDIL is an extension of the system for !-free multiplicative linear logic constructed by the author and elaborated by A. Babaev. Main new feature here is the treatment of the modality !. It uses a device inspired by D. Prawitz' treatment of S4 combined with a construction $<\Gamma>$ introduced by the author to avoid cut-like constructions used in $\otimes$ (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Completeness of the normal typed fragment of the λ-system U.Glen Helman - 1977 - Journal of Philosophical Logic 6 (1):33 - 46.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Advances in Natural Deduction: A Celebration of Dag Prawitz's Work.Luiz Carlos Pereira & Edward Hermann Haeusler (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his seminal research. Dag Prawitz’s work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science. The range of contributions includes material on the extension of natural deduction with higher-order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On sequence-conclusion natural deduction systems.Branislav R. Boričić - 1985 - Journal of Philosophical Logic 14 (4):359 - 377.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • An Analysis of the Rules of Gentzen’s _Nj and Lj_.Mirjana Borisavljević - 2018 - Review of Symbolic Logic 11 (2):347-370.
    The connection between the rules and derivations of Gentzen’s calculiNJandLJwill be explained by several steps (i.e., systems), and an analysis of the well-known problems of the connection between reduction steps of normalization and cut elimination, from Zucker (1974) and Urban (2014), will be given.
    Download  
     
    Export citation  
     
    Bookmark   3 citations