Switch to: References

Add citations

You must login to add citations.
  1. Scientific knowledge in the age of computation.Sophia Efstathiou, Rune Nydal, Astrid LÆgreid & Martin Kuiper - 2019 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 34 (2):213-236.
    With increasing publication and data production, scientific knowledge presents not simply an achievement but also a challenge. Scientific publications and data are increasingly treated as resources that need to be digitally ‘managed.’ This gives rise to scientific Knowledge Management : second-order scientific work aiming to systematically collect, take care of and mobilise first-hand disciplinary knowledge and data in order to provide new first-order scientific knowledge. We follow the work of Leonelli, Efstathiou and Hislop in our analysis of the use of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific revolutions, specialization and the discovery of the structure of DNA: toward a new picture of the development of the sciences.Politi Vincenzo - 2018 - Synthese 195 (5):2267-2293.
    In his late years, Thomas Kuhn became interested in the process of scientific specialization, which does not seem to possess the destructive element that is characteristic of scientific revolutions. It therefore makes sense to investigate whether and how Kuhn’s insights about specialization are consistent with, and actually fit, his model of scientific progress through revolutions. In this paper, I argue that the transition toward a new specialty corresponds to a revolutionary change for the group of scientists involved in such a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Discipline-building in synthetic biology.Bernadette Bensaude-Vincent - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (2):122-129.
    Despite the multidisciplinary dimension of the kinds of research conducted under the umbrella of synthetic biology, the US-based founders of this new research area adopted a disciplinary profile to shape its institutional identity. In so doing they took inspiration from two already established fields with very different disciplinary patterns. The analogy with synthetic chemistry suggested by the term ‘synthetic biology’ is not the only model. Information technology is clearly another source of inspiration. The purpose of the paper, with its focus (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Making Knowledge in Synthetic Biology: Design Meets Kludge.Maureen A. O’Malley - 2009 - Biological Theory 4 (4):378-389.
    Synthetic biology is an umbrella term that covers a range of aims, approaches, and techniques. They are all brought together by common practices of analogizing, synthesizing, mechanicizing, and kludging. With a focus on kludging as the connection point between biology, engineering, and evolution, I show how synthetic biology’s successes depend on custom-built kludges and a creative, “make-it-work” attitude to the construction of biological systems. Such practices do not fit neatly, however, into synthetic biology’s celebration of rational design. Nor do they (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • From molecules to systems: the importance of looking both ways.Alexander Powell & John Dupré - 2009 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 40 (1):54-64.
    Although molecular biology has meant different things at different times, the term is often associated with a tendency to view cellular causation as conforming to simple linear schemas in which macro-scale effects are specified by micro-scale structures. The early achievements of molecular biologists were important for the formation of such an outlook, one to which the discovery of recombinant DNA techniques, and a number of other findings, gave new life even after the complexity of genotype–phenotype
    relations had become apparent. Against this (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Adjusting to precarity: how and why the Roslin Institute forged a leading role for itself in international networks of pig genomics research.James W. E. Lowe - 2021 - British Journal for the History of Science 54 (4):507-530.
    From the 1980s onwards, the Roslin Institute and its predecessor organizations faced budget cuts, organizational upheaval and considerable insecurity. Over the next few decades, it was transformed by the introduction of molecular biology and transgenic research, but remained a hub of animal geneticists conducting research aimed at the livestock-breeding industry. This paper explores how these animal geneticists embraced genomics in response to the many-faceted precarity that the Roslin Institute faced, establishing it as a global centre for pig genomics research through (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Human genetics after the bomb: Archives, clinics, proving grounds and board rooms.Susan Lindee - 2016 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 55:45-53.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Biología de sistemas y biología sintética como tecnociencias emergentes.Karen Kastenhofer - 2016 - Isegoría 55:529.
    La biología de sistemas y la biología sintética pueden ser consideradas como ejemplos de tecnociencias emergentes. Están esencialmente marcadas por promesas de futuro y por visiones, por una cierta lógica y uso de términos, por determinadas formas de organización social, por la integración en un régimen específico de fomento e innovación, así como por una matriz característica de orientaciones para la praxis de investigación. Esta constitución específica de la biología de sistemas y de la biología sintética tiene, por su parte, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Pluralization through epistemic competition: scientific change in times of data-intensive biology.Fridolin Gross, Nina Kranke & Robert Meunier - 2019 - History and Philosophy of the Life Sciences 41 (1):1.
    We present two case studies from contemporary biology in which we observe conflicts between established and emerging approaches. The first case study discusses the relation between molecular biology and systems biology regarding the explanation of cellular processes, while the second deals with phylogenetic systematics and the challenge posed by recent network approaches to established ideas of evolutionary processes. We show that the emergence of new fields is in both cases driven by the development of high-throughput data generation technologies and the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • From the genetic to the computer program: the historicity of ‘data’ and ‘computation’ in the investigations on the nematode worm C. elegans.Miguel García-Sancho - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):16-28.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Scientific knowledge in the age of computation: Explicated, computable and manageable?Sophia Efstathiou, Rune Nydal, Astrid Laegreid & Martin Kuiper - 2019 - Theoria. An International Journal for Theory, History and Foundations of Science 34 (2):213.
    We have two theses about scientific knowledge in the age of computation. Our general claim is that scientific Knowledge Management practices emerge as second-order practices whose aim is to systematically collect, take care of and mobilise first-hand disciplinary knowledge and data. Our specific thesis is that knowledge management practices are transforming biological research in at least three ways. We argue that scientific Knowledge Management a. operates with founded concepts of biological knowledge as explicated and computable, b. enables new outputs and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Calculating life? Duelling discourses in interdisciplinary systems biology.Jane Calvert & Joan H. Fujimura - 2011 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42 (2):155-163.
    A high profile context in which physics and biology meet today is in the new field of systems biology. Systems biology is a fascinating subject for sociological investigation because the demands of interdisciplinary collaboration have brought epistemological issues and debates front and centre in discussions amongst systems biologists in conference settings, in publications, and in laboratory coffee rooms. One could argue that systems biologists are conducting their own philosophy of science. This paper explores the epistemic aspirations of the field by (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations