Switch to: References

Add citations

You must login to add citations.
  1. Ignoring Complexity: Epistemic Wagers and Knowledge Practices among Synthetic Biologists.Talia Dan-Cohen - 2016 - Science, Technology, and Human Values 41 (5):899-921.
    This paper links two domains of recent interest in science and technology studies, complexity and ignorance, in the context of knowledge practices observed among synthetic biologists. Synthetic biologists are recruiting concepts and methods from computer science and electrical engineering in order to design and construct novel organisms in the lab. Their field has taken shape amidst revised assessments of life’s complexity in the aftermath of the Human Genome Project. While this complexity is commonly taken to be an immanent property of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Speculation Made Material: Experimental Archaeology and Maker’s Knowledge.Adrian Currie - 2022 - Philosophy of Science 89 (2):337-359.
    Experimental archaeology is often understood both as testing hypotheses about processes shaping the archaeological record and as generating tacit knowledge. Considering lithic technologies, I examine the relationship between these conceptions. Experimental archaeology is usefully understood via “maker’s knowledge”: archaeological experiments generate embodied know-how enabling archaeological hypotheses to be grasped and challenged, and further, well-positioning archaeologists to generate integrated interpretations. Finally, experimental archaeology involves “material speculation”: the constraints and affordances of archaeologists and their materials shape productive exploration of the capacities of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific perspectivism: A philosopher of science's response to the challenge of big data biology.Werner Callebaut - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):69-80.
    Big data biology—bioinformatics, computational biology, systems biology (including ‘omics’), and synthetic biology—raises a number of issues for the philosophy of science. This article deals with several such: Is data-intensive biology a new kind of science, presumably post-reductionistic? To what extent is big data biology data-driven? Can data ‘speak for themselves?’ I discuss these issues by way of a reflection on Carl Woese’s worry that “a society that permits biology to become an engineering discipline, that allows that science to slip into (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Scientific perspectivism: A philosopher of science’s response to the challenge of big data biology.Werner Callebaut - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):69-80.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Naturalizing Theorizing: Beyond a Theory of Biological Theories. [REVIEW]Werner Callebaut - 2013 - Biological Theory 7 (4):413-429.
    Although “theory” has been the prevalent unit of analysis in the meta-study of science throughout most of the twentieth century, the concept remains elusive. I further explore the leitmotiv of several authors in this issue: that we should deal with theorizing (rather than theory) in biology as a cognitive activity that is to be investigated naturalistically. I first contrast how philosophers and biologists have tended to think about theory in the last century or so, and consider recent calls to upgrade (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Enrolling the Toggle Switch: Visionary Claims and the Capability of Modeling Objects in the Disciplinary Formation of Synthetic Biology.Clemens Blümel - 2016 - NanoEthics 10 (3):269-287.
    Synthetic biology is a research field that has grown rapidly and attracted considerable attention. Most prominently, it has been labelled the ‘engineering of biology’. While other attempts to label the field have been also pursued, the program of engineering can be considered the core of the field’s disciplinary program, of its identity. This article addresses the success of the ‘engineering program’ in synthetic biology and argues that its success can partly be explained by distinct practices of persuasion that aim at (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interactive Models in Synthetic Biology: Exploring Biological and Cognitive Inter-Identities.Leonardo Bich - 2020 - Frontiers in Psychology 11.
    The aim of this article is to investigate the relevance and implications of synthetic models for the study of the interactive dimension of minimal life and cognition, by taking into consideration how the use of artificial systems may contribute to an understanding of the way in which interactions may affect or even contribute to shape biological identities. To do so, this article analyzes experimental work in synthetic biology on different types of interactions between artificial and natural systems, more specifically: between (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Discipline-building in synthetic biology.Bernadette Bensaude-Vincent - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (2):122-129.
    Despite the multidisciplinary dimension of the kinds of research conducted under the umbrella of synthetic biology, the US-based founders of this new research area adopted a disciplinary profile to shape its institutional identity. In so doing they took inspiration from two already established fields with very different disciplinary patterns. The analogy with synthetic chemistry suggested by the term ‘synthetic biology’ is not the only model. Information technology is clearly another source of inspiration. The purpose of the paper, with its focus (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Repertoires: A post-Kuhnian perspective on scientific change and collaborative research.Rachel A. Ankeny & Sabina Leonelli - 2016 - Studies in History and Philosophy of Science Part A 60:18-28.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Toward a philosophy of technosciences.Bernadette Bensaude Vincent & Sacha Loeve - 2018 - In Bernadette Bensaude Vincent, Xavier Guchet & Sacha Loeve (eds.), French Philosophy of Technology: Classical Readings and Contemporary Approaches. Cham: Springer Verlag. pp. 169-186.
    The term " technoscience " gained philosophical significance in the 1970s but it aroused ambivalent views. On the one hand, several scholars have used it to shed light on specific features of recent scientific research, especially with regard to emerging technologies that blur boundaries (such as natural/artificial, machine/living being, knowing/making and so on); on the other hand, as a matter of fact " technoscience " did not prompt great interest among philosophers. In the French area, a depreciative meaning prevails: " (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • From self-organization to self-assembly: a new materialism?Bernadette Bensaude Vincent - 2016 - History and Philosophy of the Life Sciences 38 (3).
    While self-organization has been an integral part of academic discussions about the distinctive features of living organisms, at least since Immanuel Kant’s Critique of Judgement, the term ‘self-assembly’ has only been used for a few decades as it became a hot research topic with the emergence of nanotechnology. Could it be considered as an attempt at reducing vital organization to a sort of assembly line of molecules? Considering the context of research on self-assembly I argue that the shift of attention (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Living Machines: Metaphors We Live By.Nora S. Vaage - 2020 - NanoEthics 14 (1):57-70.
    Within biology and in society, living creatures have long been described using metaphors of machinery and computation: ‘bioengineering’, ‘genes as code’ or ‘biological chassis’. This paper builds on Lakoff and Johnson’s argument that such language mechanisms shape how we understand the world. I argue that the living machines metaphor builds upon a certain perception of life entailing an idea of radical human control of the living world, looking back at the historical preconditions for this metaphor. I discuss how design is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Nanotechnology and Synthetic Biology: The Ambiguity of the Nano-Bio Convergence.Louis Ujéda - 2019 - Philosophia Scientiae 23:57-72.
    Cet article étudie l’étendue de la convergence réelle entre les nanotechnologies et la biologie de synthèse, symbole des technosciences biologiques. Pour traiter la question de la dichotomie entre le niveau des objets auquel on observe un processus de pluralisation plutôt qu’une convergence, et le niveau des discours, où le scénario de la convergence semble rester l’explication dominante, nous développons une analyse des disciplines comme dispositifs au sens de Foucault. Cela permet de décrire précisément les différentes strates composant les dispositifs et (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Nanotechnology and Synthetic Biology: The Ambiguity of the Nano-Bio Convergence.Louis Ujéda - 2019 - Philosophia Scientiae 23:57-72.
    Cet article étudie l’étendue de la convergence réelle entre les nanotechnologies et la biologie de synthèse, symbole des technosciences biologiques. Pour traiter la question de la dichotomie entre le niveau des objets auquel on observe un processus de pluralisation plutôt qu’une convergence, et le niveau des discours, où le scénario de la convergence semble rester l’explication dominante, nous développons une analyse des disciplines comme dispositifs au sens de Foucault. Cela permet de décrire précisément les différentes strates composant les dispositifs et (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Diversity of Engineering in Synthetic Biology.Massimiliano Simons - 2020 - NanoEthics 14 (1):71-91.
    A recurrent theme in the characterization of synthetic biology is the role of engineering. This theme is widespread in the accounts of scholars studying this field and the biologists working in it, in those of the biologists themselves, as well as in policy documents. The aim of this article is to open this black-box of engineering that is supposed to influence and change contemporary life sciences. Too often, both synthetic biologists and their critics assume a very narrow understanding of what (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Knowing Use: An Analysis of Epistemic Functionality in Synthetic Biology.Pablo Schyfter - 2021 - Social Epistemology 35 (5):475-489.
    Many things that humans put together humans also put to use. Among these are certain forms of knowledge. Science studies and the sociology of knowledge have contributed great insight into scientist...
    Download  
     
    Export citation  
     
    Bookmark  
  • How a ‘drive to make’ shapes synthetic biology.Pablo Schyfter - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4b):632-640.
    A commitment to ‘making’—creating or producing things—can shape scientific and technological fields in important ways. This article demonstrates this by exploring synthetic biology, a field committed to making use of advanced techniques from molecular biology in order to make with living matter. I describe and analyse how this field’s ‘drive to make’ shapes its organisational, methodological, epistemological, and ontological character. Synthetic biologists’ ambition to make helps determine how their field demarcates itself, sets appropriate methods and practices, construes the purpose and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Biobricks and Crocheted Coral: Dispatches from the Life Sciences in the Age of Fabrication.Sophia Roosth - 2013 - Science in Context 26 (1):153-171.
    ArgumentWhat does “life” become at a moment when biological inquiry proceeds by manufacturing biological artifacts and systems? In this article, I juxtapose two radically different communities, synthetic biologists and Hyperbolic Crochet Coral Reef crafters (HCCR). Synthetic biology is a decade-old research initiative that seeks to merge biology with engineering and experimental research with manufacture. The HCCR is a distributed venture of three thousand craftspeople who cooperatively fabricate a series of yarn and plastic coral reefs to draw attention to the menace (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Metabolism Instead of Machine: Towards an Ontology of Hybrids.Julia Rijssenbeek, Vincent Blok & Zoë Robaey - 2022 - Philosophy and Technology 35 (3):1-23.
    The emerging field of synthetic biology aims to engineer novel biological entities. The envisioned future bio-based economy builds largely on “cell factories”: organisms that have been metabolically engineered to sustainably produce substances for human ends. In this paper, we argue that synthetic biology’s goal of creating efficient production vessels for industrial applications implies a set of ontological assumptions according to which living organisms are machines. Traditionally, a machine is understood as a technological, isolated and controllable production unit consisting of parts. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • ¿Tiene futuro la vida sin pasado? El desdén de la evolución en biología sintética.Laura Nuño De La Rosa - 2016 - Isegoría 55:443.
    La biología sintética mantiene una relación muy singular con la teoría evolutiva: por un lado, parte de una interpretación ingenieril de la evolución para fundar su aproximación al diseño de bioartefactos; por otro, la biología sintética aspira, en última instancia, a deshacerse de la evolución creando organismos de novo que se comporten de un modo predecible. Tras examinar las tres grandes propiedades que aparecen recurrentemente en la descripción sintética de los nuevos artefactos orgánicos, argumentaré que la biología sintética se erige (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Comparison between the work of synthetic biologists and the action of evolution: engineering versus tinkering.Michel Morange - 2013 - Biological Theory 8 (4):318-323.
    The comparison between natural evolution and the action of a tinkerer has become highly popular since its reintroduction by François Jacob at the end of the 1970s. It has been used as a weapon against the existence of an “intelligent design” as well as a way for synthetic biologists to promote their ambitious projects. I will describe the complex history of this metaphor, and examine its pertinence. Whereas Darwin considered it as a way to describe how evolution proceeded, Jacob linked (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Can synthetic biology shed light on the origin of life?Christophe Malaterre - 2009 - Biological Theory 4 (4):357-367.
    It is a most commonly accepted hypothesis that life originated from inanimate matter, somehow being a synthetic product of organic aggregates, and as such, a result of some sort of prebiotic synthetic biology. In the past decades, the newly formed scientific discipline of synthetic biology has set ambitious goals by pursuing the complete design and production of genetic circuits, entire genomes or even whole organisms. In this paper, I argue that synthetic biology might also shed some novel and interesting perspectives (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Synthetic biology and the technicity of biofuels.Adrian Mackenzie - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (2):190-198.
    The principal existing real-world application of synthetic biology is biofuels. Several ‘next generation biofuel’ companies—Synthetic Genomics, Amyris and Joule Unlimited Technologies—claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Functions and Health at the Interface of Biology and Technology.Elselijn Kingma - 2020 - Noûs 54 (1):182-203.
    Synthetic biology promises to eliminate the distinction between biology and engineering by delivering a philosophically interesting new kind of entity: a biological organism that is wholly designed and constructed by humans. The possibility of such organisms raises interesting questions in three domains: the analysis of (1) biological functions, (2) engineering functions, and (3) health and disease. This paper identifies and systematically answers these questions. This does not only establish how we should think about functions and health and disease in synthetic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • DYI-Bio - economic, epistemological and ethical implications and ambivalences.Jozef Keulartz & Henk van den Belt - 2016 - Life Sciences, Society and Policy 12 (1):1-19.
    Since 2008, we witness the emergence of the Do-It-Yourself Biology movement, a global movement spreading the use of biotechnology beyond traditional academic and industrial institutions and into the lay public. Practitioners include a broad mix of amateurs, enthusiasts, students, and trained scientists. At this moment, the movement counts nearly 50 local groups, mostly in America and Europe, but also increasingly in Asia. Do-It-Yourself Bio represents a direct translation of hacking culture and practicesfrom the realm of computers and software into the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is Proof of Concept Research and how does it Generate Epistemic and Ethical Categories for Future Scientific Practice?Catherine Elizabeth Kendig - 2016 - Science and Engineering Ethics 22 (3):735-753.
    “Proof of concept” is a phrase frequently used in descriptions of research sought in program announcements, in experimental studies, and in the marketing of new technologies. It is often coupled with either a short definition or none at all, its meaning assumed to be fully understood. This is problematic. As a phrase with potential implications for research and technology, its assumed meaning requires some analysis to avoid it becoming a descriptive category that refers to all things scientifically exciting. I provide (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Reengineering Metaphysics: Modularity, Parthood, and Evolvability in Metabolic Engineering.Catherine Kendig & Todd T. Eckdahl - 2017 - Philosophy, Theory, and Practice in Biology 9 (8).
    The premise of biological modularity is an ontological claim that appears to come out of practice. We understand that the biological world is modular because we can manipulate different parts of organisms in ways that would only work if there were discrete parts that were interchangeable. This is the foundation of the BioBrick assembly method widely used in synthetic biology. It is one of a number of methods that allows practitioners to construct and reconstruct biological pathways and devices using DNA (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Grounding knowledge and normative valuation in agent-based action and scientific commitment.Catherine Kendig - 2018 - In Hauke Riesch, Nathan Emmerich & Steven Wainwright (eds.), Philosophies and Sociologies of Bioethics: Crossing the Divides. Cham, Switzerland: Springer. pp. 41-64.
    Philosophical investigation in synthetic biology has focused on the knowledge-seeking questions pursued, the kind of engineering techniques used, and on the ethical impact of the products produced. However, little work has been done to investigate the processes by which these epistemological, metaphysical, and ethical forms of inquiry arise in the course of synthetic biology research. An attempt at this work relying on a particular area of synthetic biology will be the aim of this chapter. I focus on the reengineering of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Two sides of the same coin? The epistemic cultures of systems and synthetic biology.Karen Kastenhofer - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (2):130-140.
    Systems and synthetic biology both emerged around the turn of this century as labels for new research approaches. Although their disciplinary status as well as their relation to each other is rarely discussed in depth, now and again the idea is invoked that both approaches represent ‘two sides of the same coin’. The following paper focuses on this general notion and compares it with empirical findings concerning the epistemic cultures prevalent in the two contexts. Drawing on interviews with researchers from (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Organism, machine, artifact: The conceptual and normative challenges of synthetic biology.Sune Holm & Russell Powell - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):627-631.
    Synthetic biology is an emerging discipline that aims to apply rational engineering principles in the design and creation of organisms that are exquisitely tailored to human ends. The creation of artificial life raises conceptual, methodological and normative challenges that are ripe for philosophical investigation. This special issue examines the defining concepts and methods of synthetic biology, details the contours of the organism–artifact distinction, situates the products of synthetic biology vis-à-vis this conceptual typology and against historical human manipulation of the living (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Synthetic biology between technoscience and thing knowledge.Axel Gelfert - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (2):141-149.
    Synthetic biology presents a challenge to traditional accounts of biology: Whereas traditional biology emphasizes the evolvability, variability, and heterogeneity of living organisms, synthetic biology envisions a future of homogeneous, humanly engineered biological systems that may be combined in modular fashion. The present paper approaches this challenge from the perspective of the epistemology of technoscience. In particular, it is argued that synthetic-biological artifacts lend themselves to an analysis in terms of what has been called ‘thing knowledge’. As such, they should neither (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The End and Rebirth of Nature? From Politics of Nature to Synthetic Biology.Massimiliano Simons - 2016 - Philosophica -- Revista Do Departamento de Filosofia da Faculdade de Letras de Lisboa 47:109-124.
    In this article, two different claims about nature are discussed. On the one hand, environmental philosophy has forced us to reflect on our position within nature. We are not the masters of nature as was claimed before. On the other hand there are the recent developments within synthetic biology. It claims that, now at last, we can be the masters of nature we have never been before. The question is then raised how these two claims must be related to one (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dreaming of a Universal Biology: Synthetic Biology and the Origins of Life.Massimiliano Simons - 2021 - Hyle: International Journal for Philosophy of Chemistry 27:91-116.
    Synthetic biology aims to synthesize novel biological systems or redesign existing ones. The field has raised numerous philosophical questions, but most especially what is novel to this field. In this article I argue for a novel take, since the dominant ways to understand synthetic biology’s specificity each face problems. Inspired by the examination of the work of a number of chemists, I argue that synthetic biology differentiates itself by a new regime of articulation, i.e. a new way of articulating the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Synthetic Modelling of Biological Communication: A Theoretical and Operational Framework for the Investigation of Minimal Life and Cognition.Leonardo Bich & Ramiro Frick - 2018 - Complex Systems 27 (3):267-287.
    This paper analyses conceptual and experimental work in synthetic biology on different types of interactions considered as minimal examples or models of communication. It discusses their pertinence and relevance for the wider understanding of this biological and cognitive phenomenon. It critically analyses their limits and it argues that a conceptual framework is needed. As a possible solution, it provides a theoretical account of communication based on the notion of organisation, and characterised in terms of the functional influence exerted by the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • DIY-Bio – economic, epistemological and ethical implications and ambivalences.Jozef Keulartz & Henk Belt - unknown
    Since 2008, we witness the emergence of the Do-It-Yourself Biology movement, a global movement spreading the use of biotechnology beyond traditional academic and industrial institutions and into the lay public. Practitioners include a broad mix of amateurs, enthusiasts, students, and trained scientists. At this moment, the movement counts nearly 50 local groups, mostly in America and Europe, but also increasingly in Asia. Do-It-Yourself Bio represents a direct translation of hacking culture and practicesfrom the realm of computers and software into the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How the techniques of molecular biology are developed from natural systems.Isobel Ronai - unknown
    A striking characteristic of the highly successful techniques in molecular biology is that they are derived from natural systems. RNA interference, for example, utilises a mechanism that evolved in eukaryotes to destroy foreign nucleic acid. Other examples include restriction enzymes, the polymerase chain reaction, green fluorescent protein and CRISPR-Cas. I propose that biologists exploit natural molecular mechanisms for their effectors’ activity and biological specificity. I also show that the developmental trajectory of novel techniques in molecular biology, such as RNAi, is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation