Switch to: References

Add citations

You must login to add citations.
  1. Consequences of Assigning Non-Measurable Sets Imprecise Probabilities.Joshua Thong - 2024 - Mind (531):793-804.
    This paper is a discussion note on Isaacs et al. (2022), who have claimed to offer a new motivation for imprecise probabilities, based on the mathematical phenomenon of non-measurability. In this note, I clarify some consequences of their proposal. In particular, I show that if their proposal is applied to a bounded 3-dimensional space, then they have to reject at least one of the following: (i) If A is at most as probable as B and B is at most as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Are the Odds that Everyone is Depraved?Scott Hill - 2020 - American Philosophical Quarterly 57 (3):299-308.
    Why does God allow evil? One hypothesis is that God desires the existence and activity of free creatures but He was unable to create a world with such creatures and such activity without also allowing evil. If Molinism is true, what probability should be assigned to this hypothesis? Some philosophers claim that a low probability should be assigned because there are an infinite number of possible people and because we have no reason to suppose that such creatures will choose one (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Popper Functions, Uniform Distributions and Infinite Sequences of Heads.Alexander R. Pruss - 2015 - Journal of Philosophical Logic 44 (3):259-271.
    Popper functions allow one to take conditional probabilities as primitive instead of deriving them from unconditional probabilities via the ratio formula P=P/P. A major advantage of this approach is it allows one to condition on events of zero probability. I will show that under plausible symmetry conditions, Popper functions often fail to do what they were supposed to do. For instance, suppose we want to define the Popper function for an isometrically invariant case in two dimensions and hence require the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Non-classical probabilities invariant under symmetries.Alexander R. Pruss - 2021 - Synthese 199 (3-4):8507-8532.
    Classical real-valued probabilities come at a philosophical cost: in many infinite situations, they assign the same probability value—namely, zero—to cases that are impossible as well as to cases that are possible. There are three non-classical approaches to probability that can avoid this drawback: full conditional probabilities, qualitative probabilities and hyperreal probabilities. These approaches have been criticized for failing to preserve intuitive symmetries that can be preserved by the classical probability framework, but there has not been a systematic study of the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The strength of de Finetti’s coherence theorem.Michael Nielsen - 2020 - Synthese 198 (12):11713-11724.
    I show that de Finetti’s coherence theorem is equivalent to the Hahn-Banach theorem and discuss some consequences of this result. First, the result unites two aspects of de Finetti’s thought in a nice way: a corollary of the result is that the coherence theorem implies the existence of a fair countable lottery, which de Finetti appealed to in his arguments against countable additivity. Another corollary of the result is the existence of sets that are not Lebesgue measurable. I offer a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations