Switch to: References

Add citations

You must login to add citations.
  1. Several notes on the power of Gomory–Chvátal cuts.Edward A. Hirsch & Arist Kojevnikov - 2006 - Annals of Pure and Applied Logic 141 (3):429-436.
    We prove that the Cutting Plane proof system based on Gomory–Chvátal cuts polynomially simulates the lift-and-project system with integer coefficients written in unary. The restriction on the coefficients can be omitted when using Krajíček’s cut-free Gentzen-style extension of both systems. We also prove that Tseitin tautologies have short proofs in this extension.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Resolution over linear equations and multilinear proofs.Ran Raz & Iddo Tzameret - 2008 - Annals of Pure and Applied Logic 155 (3):194-224.
    We develop and study the complexity of propositional proof systems of varying strength extending resolution by allowing it to operate with disjunctions of linear equations instead of clauses. We demonstrate polynomial-size refutations for hard tautologies like the pigeonhole principle, Tseitin graph tautologies and the clique-coloring tautologies in these proof systems. Using interpolation we establish an exponential-size lower bound on refutations in a certain, considerably strong, fragment of resolution over linear equations, as well as a general polynomial upper bound on interpolants (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Some applications of propositional logic to cellular automata.Stefano Cavagnetto - 2009 - Mathematical Logic Quarterly 55 (6):605-616.
    In this paper we give a new proof of Richardson's theorem [31]: a global function G[MATHEMATICAL DOUBLE-STRUCK CAPITAL A] of a cellular automaton [MATHEMATICAL DOUBLE-STRUCK CAPITAL A] is injective if and only if the inverse of G[MATHEMATICAL DOUBLE-STRUCK CAPITAL A] is a global function of a cellular automaton. Moreover, we show a way how to construct the inverse cellular automaton using the method of feasible interpolation from [20]. We also solve two problems regarding complexity of cellular automata formulated by Durand (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards NP – P via proof complexity and search.Samuel R. Buss - 2012 - Annals of Pure and Applied Logic 163 (7):906-917.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Propositional proof compressions and DNF logic.L. Gordeev, E. Haeusler & L. Pereira - 2011 - Logic Journal of the IGPL 19 (1):62-86.
    This paper is a continuation of dag-like proof compression research initiated in [9]. We investigate proof compression phenomenon in a particular, most transparent case of propositional DNF Logic. We define and analyze a very efficient semi-analytic sequent calculus SEQ*0 for propositional DNF. The efficiency is achieved by adding two special rules CQ and CS; the latter rule is a variant of the weakened substitution rule WS from [9], while the former one being specially designed for DNF sequents. We show that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The complexity of propositional proofs.Nathan Segerlind - 2007 - Bulletin of Symbolic Logic 13 (4):417-481.
    Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Nisan-Wigderson generators in proof systems with forms of interpolation.Ján Pich - 2011 - Mathematical Logic Quarterly 57 (4):379-383.
    We prove that the Nisan-Wigderson generators based on computationally hard functions and suitable matrices are hard for propositional proof systems that admit feasible interpolation. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Upper bounds on complexity of Frege proofs with limited use of certain schemata.Pavel Naumov - 2006 - Archive for Mathematical Logic 45 (4):431-446.
    The paper considers a commonly used axiomatization of the classical propositional logic and studies how different axiom schemata in this system contribute to proof complexity of the logic. The existence of a polynomial bound on proof complexity of every statement provable in this logic is a well-known open question.The axiomatization consists of three schemata. We show that any statement provable using unrestricted number of axioms from the first of the three schemata and polynomially-bounded in size set of axioms from the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the computational content of intuitionistic propositional proofs.Samuel R. Buss & Pavel Pudlák - 2001 - Annals of Pure and Applied Logic 109 (1-2):49-64.
    The paper proves refined feasibility properties for the disjunction property of intuitionistic propositional logic. We prove that it is possible to eliminate all cuts from an intuitionistic proof, propositional or first-order, without increasing the Horn closure of the proof. We obtain a polynomial time, interactive, realizability algorithm for propositional intuitionistic proofs. The feasibility of the disjunction property is proved for sequents containing Harrop formulas. Under hardness assumptions for NP and for factoring, it is shown that the intuitionistic propositional calculus does (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Proof complexity of substructural logics.Raheleh Jalali - 2021 - Annals of Pure and Applied Logic 172 (7):102972.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Propositional proof systems based on maximum satisfiability.Maria Luisa Bonet, Sam Buss, Alexey Ignatiev, Antonio Morgado & Joao Marques-Silva - 2021 - Artificial Intelligence 300 (C):103552.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Randomized feasible interpolation and monotone circuits with a local oracle.Jan Krajíček - 2018 - Journal of Mathematical Logic 18 (2):1850012.
    The feasible interpolation theorem for semantic derivations from [J. Krajíček, Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic, J. Symbolic Logic 62 457–486] allows to derive from some short semantic derivations of the disjointness of two [Formula: see text] sets [Formula: see text] and [Formula: see text] a small communication protocol computing the Karchmer–Wigderson multi-function [Formula: see text] associated with the sets, and such a protocol further yields a small circuit separating [Formula: see text] from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Resolution for Max-SAT.María Luisa Bonet, Jordi Levy & Felip Manyà - 2007 - Artificial Intelligence 171 (8-9):606-618.
    Download  
     
    Export citation  
     
    Bookmark   8 citations