Switch to: References

Add citations

You must login to add citations.
  1. Gedankenexperimente in der Philosophie.Daniel Cohnitz - 2006 - Mentis.
    Wie ist es wohl, eine Fledermaus zu sein? Wäre ein rein physikalisches Duplikat von mir nur ein empfindungsloser Zombie? Muss man sich seinem Schicksal ergeben, wenn man sich unfreiwillig als lebensnotwendige Blutwaschanlage eines weltberühmten Violinisten wieder findet? Kann man sich wünschen, der König von China zu sein? Bin ich vielleicht nur ein Gehirn in einem Tank mit Nährflüssigkeit, das die Welt von einer Computersimulation vorgegaukelt bekommt? Worauf beziehen sich die Menschen auf der Zwillingserde mit ihrem Wort 'Wasser', wenn es bei (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   5 citations  
  • Algorithmic Information Theory and Undecidability.Panu Raatikainen - 2000 - Synthese 123 (2):217-225.
    Chaitin’s incompleteness result related to random reals and the halting probability has been advertised as the ultimate and the strongest possible version of the incompleteness and undecidability theorems. It is argued that such claims are exaggerations.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Problem of the Simplest Diophantine Representation.Panu Raatikainen - 1997 - Nordic Journal of Philosophical Logic 2:47-54.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Explicating the Concept the Power of an Arithmetical Theory.Jörgen Sjögren - 2008 - Journal of Philosophical Logic 37 (2):183 - 202.
    In this paper I discuss possible ways of measuring the power of arithmetical theories, and the possiblity of making an explication in Carnap's sense of this concept. Chaitin formulates several suggestions how to construct measures, and these suggestions are reviewed together with some new and old critical arguments. I also briefly review a measure I have designed together with some shortcomings of this measure. The conclusion of the paper is that it is not possible to formulate an explication of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Incompleteness, Complexity, Randomness and Beyond.Cristian S. Calude - 2002 - Minds and Machines 12 (4):503-517.
    Gödel's Incompleteness Theorems have the same scientific status as Einstein's principle of relativity, Heisenberg's uncertainty principle, and Watson and Crick's double helix model of DNA. Our aim is to discuss some new faces of the incompleteness phenomenon unveiled by an information-theoretic approach to randomness and recent developments in quantum computing.
    Download  
     
    Export citation  
     
    Bookmark  
  • Exploring Randomness.Panu Raatikainen - 2001 - Notices of the AMS 48 (9):992-6.
    Review of "Exploring Randomness" (200) and "The Unknowable" (1999) by Gregory Chaitin.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Propagation of Partial Randomness.Kojiro Higuchi, W. M. Phillip Hudelson, Stephen G. Simpson & Keita Yokoyama - 2014 - Annals of Pure and Applied Logic 165 (2):742-758.
    Let f be a computable function from finite sequences of 0ʼs and 1ʼs to real numbers. We prove that strong f-randomness implies strong f-randomness relative to a PA-degree. We also prove: if X is strongly f-random and Turing reducible to Y where Y is Martin-Löf random relative to Z, then X is strongly f-random relative to Z. In addition, we prove analogous propagation results for other notions of partial randomness, including non-K-triviality and autocomplexity. We prove that f-randomness relative to a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Kolmogorov Complexity and Characteristic Constants of Formal Theories of Arithmetic.Shingo Ibuka, Makoto Kikuchi & Hirotaka Kikyo - 2011 - Mathematical Logic Quarterly 57 (5):470-473.
    We investigate two constants cT and rT, introduced by Chaitin and Raatikainen respectively, defined for each recursively axiomatizable consistent theory T and universal Turing machine used to determine Kolmogorov complexity. Raatikainen argued that cT does not represent the complexity of T and found that for two theories S and T, one can always find a universal Turing machine such that equation image. We prove the following are equivalent: equation image for some universal Turing machine, equation image for some universal Turing (...)
    Download  
     
    Export citation  
     
    Bookmark