Switch to: References

Add citations

You must login to add citations.
  1. Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition.Matt Jones & Bradley C. Love - 2011 - Behavioral and Brain Sciences 34 (4):169-188.
    The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology – namely, Behaviorism and evolutionary psychology – that set aside mechanistic explanations or make use of optimality assumptions. Through (...)
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • Granularity and the acquisition of grammatical gender: How order-of-acquisition affects what gets learned.Inbal Arnon & Michael Ramscar - 2012 - Cognition 122 (3):292-305.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Relationships Between Language Structure and Language Learning: The Suffixing Preference and Grammatical Categorization.Michelle C. St Clair, Padraic Monaghan & Michael Ramscar - 2009 - Cognitive Science 33 (7):1317-1329.
    It is a reasonable assumption that universal properties of natural languages are not accidental. They occur either because they are underwritten by genetic code, because they assist in language processing or language learning, or due to some combination of the two. In this paper we investigate one such language universal: the suffixing preference across the world’s languages, whereby inflections tend to be added to the end of words. A corpus analysis of child‐directed speech in English found that suffixes were more (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Computing Machinery and Understanding.Michael Ramscar - 2010 - Cognitive Science 34 (6):966-971.
    How are natural symbol systems best understood? Traditional “symbolic” approaches seek to understand cognition by analogy to highly structured, prescriptive computer programs. Here, we describe some problems the traditional computational metaphor inevitably leads to, and a very different approach to computation (Ramscar, Yarlett, Dye, Denny, & Thorpe, 2010; Turing, 1950) that allows these problems to be avoided. The way we conceive of natural symbol systems depends to a large degree on the computational metaphors we use to understand them, and machine (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation