Switch to: References

Add citations

You must login to add citations.
  1. Understanding with Toy Surrogate Models in Machine Learning.Andrés Páez - 2024 - Minds and Machines 34 (4):45.
    In the natural and social sciences, it is common to use toy models—extremely simple and highly idealized representations—to understand complex phenomena. Some of the simple surrogate models used to understand opaque machine learning (ML) models, such as rule lists and sparse decision trees, bear some resemblance to scientific toy models. They allow non-experts to understand how an opaque ML model works globally via a much simpler model that highlights the most relevant features of the input space and their effect on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The molecular vista: current perspectives on molecules and life in the twentieth century.Mathias Grote, Lisa Onaga, Angela N. H. Creager, Soraya de Chadarevian, Daniel Liu, Gina Surita & Sarah E. Tracy - 2021 - History and Philosophy of the Life Sciences 43 (1):1-18.
    This essay considers how scholarly approaches to the development of molecular biology have too often narrowed the historical aperture to genes, overlooking the ways in which other objects and processes contributed to the molecularization of life. From structural and dynamic studies of biomolecules to cellular membranes and organelles to metabolism and nutrition, new work by historians, philosophers, and STS scholars of the life sciences has revitalized older issues, such as the relationship of life to matter, or of physicochemical inquiries to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mechanist idealisation in systems biology.Dingmar van Eck & Cory Wright - 2020 - Synthese 199 (1-2):1555-1575.
    This paper adds to the philosophical literature on mechanistic explanation by elaborating two related explanatory functions of idealisation in mechanistic models. The first function involves explaining the presence of structural/organizational features of mechanisms by reference to their role as difference-makers for performance requirements. The second involves tracking counterfactual dependency relations between features of mechanisms and features of mechanistic explanandum phenomena. To make these functions salient, we relate our discussion to an exemplar from systems biological research on the mechanism for countering (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Against Interpretability: a Critical Examination of the Interpretability Problem in Machine Learning.Maya Krishnan - 2020 - Philosophy and Technology 33 (3):487-502.
    The usefulness of machine learning algorithms has led to their widespread adoption prior to the development of a conceptual framework for making sense of them. One common response to this situation is to say that machine learning suffers from a “black box problem.” That is, machine learning algorithms are “opaque” to human users, failing to be “interpretable” or “explicable” in terms that would render categorization procedures “understandable.” The purpose of this paper is to challenge the widespread agreement about the existence (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Mechanistic Models and the Explanatory Limits of Machine Learning.Emanuele Ratti & Ezequiel López-Rubio - unknown
    We argue that mechanistic models elaborated by machine learning cannot be explanatory by discussing the relation between mechanistic models, explanation and the notion of intelligibility of models. We show that the ability of biologists to understand the model that they work with severely constrains their capacity of turning the model into an explanatory model. The more a mechanistic model is complex, the less explanatory it will be. Since machine learning increases its performances when more components are added, then it generates (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations